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Abstract We cannot translate quantum behavior arising
with superposition states or entanglement efficiently into the
classical language of conventional computers (Feynman et
al. in Int. J. Theor. Phys. 21:467, 1982). A universal quan-
tum computer could describe and help to understand com-
plex quantum systems. But it is envisioned to become func-
tional only within the next decade(s). A shortcut was pro-
posed via simulating the quantum behavior of interest in an-
other quantum system, where all relevant parameters and
interactions can be controlled and observables of interest
detected sufficiently well. For example simulating quantum
spin systems within an architecture of trapped ions (Porras
and Cirac in Phys. Rev. Lett. 92:207901, 2004). Here we
specify how we simulate the spin and all necessary interac-
tions and how we calibrate their amplitudes. For example
via a two-ion phase-gate operation on two axial motional
modes simultaneously at a fidelity exceeding 95%. We ex-
plain the complete mode of operation of a quantum simula-
tor on the basis of our simple model case—the proof of prin-
ciple experiment of simulating the transition of a quantum
magnet from paramagnetic into entangled ferromagnetic or-
der (Friedenauer et al. in Nat. Phys. 4:757, 2008) and em-
phasize some of the similarities and differences with a quan-
tum computer.
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1 Introduction

If we lack the possibility for direct calculation, we tend to
step back and search for an analogue that might help to gain
deeper understanding of our problem. One intriguing exam-
ple was found by the British scientist Robert Hook [4] in
1675, not being capable to calculate the optimal form for
maximal stability of masonry arches for building. His dis-
covery was that the shape of a light flexible cord or chain
subjected to specified loads would, when inverted, give the
required shape of the perfect arch to carry those same loads.
St. Paul’s cathedral, for example, was build based on simu-
lations within a model system of “one-dimensional” chains.

In our days, other interesting problems arise that are in-
trinsically impossible to be solved via classical calculus. For
example simulations and the related deeper understanding
of the dynamics of some tens of interacting quantum spins
are intractable for the most powerful classical computers.
The generic state of 40 spin- 1

2 particles is defined by 240

numbers and to describe its evolution a matrix of 240 × 240

has to be exponentiated [5]. Even exponentially increasing
classical calculation capabilities cannot help to efficiently
simulate only slightly larger quantum systems. Already 300
particles require 2300 numbers describing the state, close to
the estimated amount of protons in (one of) our universe(s).

As originally proposed by Richard Feynman [1], a quan-
tum computer (QC) could efficiently simulate the dynamics
of many-body quantum systems. A very promising candi-
date1 might be based on trapped ions, suggested by Cirac
and Zoller in 1995 [6].

However, translating the quantum dynamics of a system
into an algorithm of stroboscopic gate operations and to run

1See, for instance, http://qist.lanl.gov/qcomp_map.shtml.

mailto:tschaetz@mpq.mpg.de
http://qist.lanl.gov/qcomp_map.shtml


196 H. Schmitz et al.

it on a potential universal quantum computer (capable to
run arbitrary algorithms) requires the control of the order
of 105 ions/quantum-bits (qubits) at operational fidelities
>99.99% [7].

Even though there appear to be no fundamental obsta-
cles for scaling the ion trap approach from six or eight
ions/qubits in state of the art experiments [8, 9] at impres-
sive operational fidelities of >99% [10], there is challenging
technology to be developed.

To gain deeper insight into the dynamics of quantum sys-
tems, an alternative approach should be taken into consid-
eration. We can choose a quantum system to be controlled
and manipulated with its evolution governed by the same
Hamiltonian as the system to be simulated. Porras and Cirac
proposed in 2004 to simulate quantum spin Hamiltonians in
ion traps adapting state of the art methods employed (de-
veloped) by the community working on quantum computa-
tion [2].

Already a chain of 40 ions/spins in a Paul trap should
allow one to outperform any classical computer while
slightly more in a two-dimensional grid would help to
solve problems of actual interest (some theoreticians con-
cerned with problems of solid-state physics see this in
reach for two-dimensional systems of 10 × 10 to 20 ×
20 ions/spins [11, 12]). This shortcut might be within reach
at state of the art operational fidelities even if the quantum
simulator (QS) gets affected by decoherence during its evo-
lution. It might still allow for meaningful results (i.e. with-
out involved quantum error correction) if one is interested in
robust effects, like quantum phase transitions.2

It has to be noted, that a universal QC will have the ca-
pacity to run also arbitrary QS—not restricted to quantum
spin systems only. And even within quantum spin systems,
it will be able to address more questions, while the short-
cut via QS at (right now) still lower operational fidelities
will be restricted to investigate sufficiently robust effects.
On the other hand, at comparable operational fidelities, QS
might allow for even more efficient processing again, since
they are intrinsically closer to the natural evolution [5]. Any-
way, until a universal QC is available, different promising
approaches for QS (e.g. within optical latices [13]) do not
have to compete with each other, but their results might be
combined to reconstruct enhanced insight.

The task of providing the feasibility test for QS involv-
ing several simulation ions/spins in an one-dimensional ion
trap was achieved in our group recently [3]. In the following
section, we try to introduce and briefly discuss the building
blocks for generic quantum spin Hamiltonians.

2A uncorrected error in the running algorithm of a QC could already al-
ter completely its output. However, state of the art operational fidelities
might be sufficient for QS studying “fault-robust” effects while univer-
sal QC requires an enormous overhead of ancilla qubits to provide error
correction (fault-tollerance).

However, there remains the fundamentally and techni-
cally important challenge to develop the ion-trap architec-
ture that allows for scaling the simulator to a larger amount
of ions/spins (100–400) and/or higher-dimensional systems.

2 Simulation of spin Hamiltonians

The Hamiltonians that can be realized with trapped ions
can show Heisenberg like interaction [2, 14]. Quantum spin
Hamiltonians of this type are supposed to describe many
solid-state systems like magnets, high-Tc superconductors,
quantum Hall ferromagnets, ferroelectrics etc., and their
simulation would allow one to observe and analyze quan-
tum phase transitions [2].

To implement QS-protocols for quantum spin Hamiltoni-
ans we have to realize the simulation of the spin, provide its
initialization and final detection, the interaction of the spin
with a magnetic field and the mutual spin–spin interaction.

In this section, we will try to explain the generic building
blocks for the case of a linear chain of ions. The simplest and
therefore the best system to investigate the feasibility of QS
in ion traps is described by the quantum-Ising Hamiltonian,

HIsing = HJ + HB = J
∑

m=n+1

σz
mσ z

n − Bx

∑

m

σx
m, (1)

requiring identical tools as the rest of the family of quantum
spin Hamiltonians.

It consists of two contributions. The first part stands for
the interaction between the spins of nearest neighbors in
the 1D spin chain, represented by the Pauli matrices σ

x,z
i .

The amplitude of J represents the interaction strength, while
its positive (negative) sign stands for an anti-ferromagnetic
(ferromagnetic) interaction. The latter part can be under-
stood as the interaction of a magnetic field with each spin
independently.

2.1 Simulating the spin

The mutual distance between the ions/spins aligned along
the axis of the linear Paul trap is typically larger than 1 µm.
Therefore, the interaction between their electronic (inter-
nal) states is negligible. In the following, we use the for-
mal equivalence between a two-level system and a spin- 1

2
magnetic moment in a magnetic field (Bloch-vector repre-
sentation) [15, 16] to simulate the spin. The two-level sys-
tem used at MPQ and depicted in Fig. 1 is spanned by the
|F = 3,MF = −3〉 and |F = 2,MF = −2〉 ground-state hy-
perfine levels of 25Mg+ labeled |↓〉 and |↑〉, respectively
(splitting ω0/2π = (E↑ − E↓)/h � 1.79 GHz). The dura-
tion available for a simulation is in principle only limited by
the decoherence of these internal states. The radiative life-
time of the hyperfine ground states is extremely long (many
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Fig. 1 On the left hand side: schematic of the relevant energy levels
(not to scale) of one 25Mg+ ion. Shown are the ground-state hyperfine
levels providing the two internal states simulating the spin (|↓〉 and
|↑〉) and the first three equidistant harmonic oscillator levels related
to the harmonic axial confinement in a linear ion trap. Typically, the
energy splitting of the motional levels and the Zeeman shift induced
by a (real) external magnetic field are of the same order of magnitude
within 1 to 10 MHz, therefore much smaller than the hyperfine splitting
of 1.79 GHz, the fine structure splitting of 2750 GHz and the optical
transition frequency of the order of 1015 Hz (280 nm). We depict the
resonant transition for state sensitive detection named (d) and the rele-
vant types of off resonant (by 2π · 80 GHz) two-photon stimulated Ra-
man transitions. (a) The carrier transition coupling the internal states to
simulate a magnetic field Bx . (b), (c) Realized by two beams to provide
a state-dependent optical-dipole force simulating the spin–spin interac-
tion J further described in the text. On the right hand side we depict
the two different beam geometries for II (I) motionally (in)dependent
transitions. The solid arrows represent the vectors �k of the individual
beams, the dotted arrows the recoils of the absorbed and emitted pho-
tons. For geometry I, the transferred momentum �|��k| � 0 while for
geometry II �|��k| � √

2|�k| along the trap axis �z

years). Therefore, the memory decoherence is primarily due
to phase errors induced by external perturbations, e.g. mag-
netic field fluctuations. In a carefully controlled environment
decoherence timescales could be on the order of many days
with experimentally demonstrated lower limits of several
minutes (see e.g. [17]). For spin detection we distinguish the
two states |↓〉 and |↑〉 by observing state-dependent laser
driven fluorescence. The laser beam frequency is tuned to
drive the spin from the |↓〉 state to some exited state, as de-
picted in Fig. 1 via beam (d), which subsequently decays
back to |↓〉 emitting a photon that can be detected. When
the spin is in the |↓〉 state, the ion scatters many photons,
approximately one per mille of them detected at a rate of the
order of 105 Hz (see Fig. 4). For the spin in the |↑〉 state,
laser beam scattering is negligible [18].

The main advantage of simulating the spin is to circum-
vent the unavoidable “natural” interaction superimposed on
the simulated ones. That is, the amplitude of the simulated

Fig. 2 Coherent oscillations of the spin. The probability to finally de-
tect the spin in state |↓〉 is depicted in dependence of the duration of
the applied rf-field for up to 3000 µs. Driving transitions from the state
|↓〉 to the state |↑〉 can be described as Rabi flopping on the Bloch
sphere. Within the simulation, the rf-field provides the simulated mag-
netic field with its amplitude Bx being proportional to the inverse of
the period of oscillation. Each data point represents the average of 500
measurements

interaction (and its range [2]) can be controlled and, for ex-
ample, even completely switched off.

2.2 Simulating the magnetic field

We simulate an effective magnetic field by coupling the
two electronic states |↓〉 and |↑〉 defined above via electro-
magnetic radiation. The coherent oscillation of the state pop-
ulation between the two levels is equivalent to Rabi flopping.
In the description of the Bloch sphere picture the tip of the
state vector rotates during one flop continuously on the sur-
face from the state |↓〉 to |↑〉. For continued rotation this
corresponds to the precession of a spin exposed to a perpen-
dicular magnetic field.

We implement this coupling, in the following described
by ΩRabi, either directly via a resonant radio-frequency (rf)
field at ω0/2π or indirectly via two-photon stimulated Ra-
man transitions driven with two laser beams [19] depicted as
(a) in Fig. 1. By tuning the difference frequency of the laser
beams to (ω1 − ω2)/2π = ω0/2π , we implement rotations
of the spin state,

R(θ,φ) ≡
(

cos θ
2 −ie−iφ sin θ

2−ie+iφ sin θ
2 cos θ

2

)
, (2)

where we use the conventions |↓〉 ≡ (0,1)T , |↑〉 ≡ (1,0)T .
The angle θ is proportional to the duration t of the rf/Raman
pulse (θ/2 = ΩRabi · t). The phase factor φ is either defined
by the rf-phase of the driving oscillator or φ = ��k · �z +
φ1 − φ2, the phase difference between the Raman beams
at the position �z of the ion (��k ≡ �k1 − �k2, the wave vec-
tor difference of the Raman beams). For the applications
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via two laser beams we can use two different beam geome-
tries, as depicted on the right hand side of Fig. 1. Here the
beams are oriented in geometry I such that �k1 is parallel to
�k2 (|��k| � 0). Motion does not affect the transitions driven
by these beams.

In any case, the relative phase φ defines a certain relative
angle within the horizontal plane of the Bloch sphere iden-
tifying the axis of rotation for precessions. For example, if
we apply a rotation R(π/2,0) on the ion and continue with
a second identical rotation, we just flip the spin from |↓〉 to
|↑〉 as if we applied a R(π,0) rotation around the same axis.
But replacing the second operation by a rotation around an
axis at 90 degrees relative to the first one via a R(π/2,π/2),
the effect of the second pulse can be interpreted as a rotation
of the spin “around itself”. The spin aligned with the new
rotational axis is therefore not changing its state. For our
simulation (see Sect. 3) this is equivalent to the spin being
aligned with the magnetic field, an eigenstate of the system
described by HB (see (1)) that has to stay unchanged.

In Fig. 2 we depict typical data from a long term oscil-
lation of the spin state (flopping curve) via the rf-radiation
applied in our simulations. We measure the period for a 2π

oscillation at a given rf-amplitude to calibrate the amplitude
of our simulated magnetic field. We have

Bx · t
�

= θ

2
= ΩRabi · t. (3)

Applying the rf-amplitude provided during our simulation
we determine a single spin rotation R(2π,0) within 118 µs
and deduce Bx/� = 2π · 4.24 kHz.

2.3 Simulating the spin–spin interaction

To implement the interaction between different spins, the
two Raman laser beams can be configured in a way that they
cause state-dependent optical-dipole forces (see Fig. 1: the
two Raman beams in geometry II coupling simultaneously
(b) |↓〉 ↔ P3/2 or (c) |↑〉 ↔ P3/2).

The k-vectors of the beams are oriented such that �k1

is approximately perpendicular to �k2 and ��k ≡ �k1 − �k2 �√
2|�k1|�z ≡ �z2π/λeff, where λeff is the effective wavelength

of the Raman beams. We choose the polarizations of the
beams such that the different couplings due to the ac-Stark
shifts by beams (b) or (c) and the associated forces are re-
lated by �F↓ = −3/2 �F↑ [20, 22]. They point along the trap
axis �z but in opposite directions.

This conditional interactions allows for the simulation of
the spin–spin interaction [2]. To illustrate the idea, let us
consider only one ion harmonically confined and exposed
to a constant force. Searching for the quadratic complement
leads to an identical but displaced harmonic oscillator po-
tential. If we expose several ions, each individually con-
fined and exposed to this force, all ions will be displaced

Fig. 3 Simplified illustration of the formation of the effective
spin–spin interaction. We distinguish two scenarios with a mutual ion
distance d equal to an integer amount of the effective wavelength λeff
of the state-dependent optical-dipole force symbolized by the sinu-
soidal curve to guarantee that the ions/spins are exposed to the same
phase of the force. The two ions in (a) are of identical internal state
and are displaced in common by the interaction with the force: their
distance d therefore remaining unchanged (d ′ = d). In (b) the two ions
of different states get displaced relative to each other, changing the
mutual distance d ′ < d . This conditional change in the ions distance
can be interpreted as a spin–spin interaction mediated by the Coulomb
energy (phonons) of the ion crystal

to the new minima of their displaced harmonic potentials. If
the force is dependent of the internal/spin state of each ion,
we can receive additionally changes in the mutual distance
of the displaced harmonic potentials. But now we have to
consider additionally the (altered) Coulomb interaction be-
tween the ions. The term describing the Coulomb interac-
tion between the ions in this new frame can be interpreted as
the desired spin–spin interaction. This simplified explana-
tion is illustrated in Fig. 3 for the case of two ions/spins. If
both spins point into the same direction, the state-dependent
optical-dipole force will push (or pull) the ions in common
along the trap axis, therefore not changing the mutual dis-
tance and the Coulomb energy, respectively. But if the two
spins point into opposite directions, one ion will be pulled
while the other one will be pushed now changing their mu-
tual distance. In the depicted scenario, the distance gets de-
creased, the Coulomb energy increased. This conditional at-
traction/repulsion can be interpreted as a spin–spin interac-
tion.

If nature gets to choose the ground state of this system, it
will prefer the spins aligned, the ferromagnetic order.

Technical reasons forced us to alter the proposal of [2]
from the state-dependent optical-dipole force induced by
a standing- (ω1 − ω2 = 0) to a walking-wave approach
(ω1 − ω2 �= 0). On the one hand, the implementation of the
standing wave requires a phase stabilization to compensate
for fluctuations in the length of the different optical paths of
the two beams to minimize spatial jitter of the pulsed wave.
On the other hand, we would have to locate the ions/spins
not only at a distance of an integer multiple of the effective
wavelength but also at the position of the maximal gradient
of the force.
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Switching to the walking wave averages out the above
described problem of phase jitter. It alters the static canon-
ical transformation to one in the co-rotating (co-oscillating)
frame with the displacement being time dependent. Within
this new frame, the ions reside at rest again. Here, we can
identify the motionally increased Coulomb energy summa-
rized in a correction term as the spin–spin interaction HJ .

To calibrate the individual amplitudes for the spin–
spin interaction by the applied fields in the QS separately
(J without Bx ), we implement a geometric phase gate [22]
with two ions/qubits.

We first describe here a two qubit gate similar to the one
in [22] using the stretch (out-of-phase) motional mode only
to elucidate the basic idea. We adjust the frequency dif-
ference between the Raman beams and therefore the am-
plitude variation of the optical-dipole force to be equal to
ω2 − ω1 = ωSTR + δ. For |δ| � ωSTR we get ω2 − ω1 close
to resonance of the out-of-phase motion of the ions at fre-
quency ωstretch = √

3ωcom (ωcom being the oscillation fre-
quency of the in-phase or center-of-mass (com) motion).
The ions are separated by a distance m · λeff (were m is
an integer) and therefore see the same phase of the state-
dependent dipole force(s) as depicted in Fig. 3. We excite
a relative motion of the ions (on the stretch mode) only for
the states |↓〉|↑〉 and |↑〉|↓〉 (not for the states |↓〉|↓〉 and
|↑〉|↑〉). If we excite the motion resonantly on the stretch
mode (δ = 0), we will continue enhancing the coherent mo-
tional excitation. By choosing the detuning δ �= 0, we ac-
celerate the motion for the duration |2π/δ| · 1/2. When the
force gets out of phase by more than π it decelerates the sys-
tem returning it to its initial motional state after |2π/δ|. We
can describe this motion within phase space of the stretch
mode as a circular path where the involved states pick up
a geometric phase proportional to the phase-space area cir-
cumscribed.

This is equivalent to a geometric phase gate GφG
, which

implements the operation [22]

GφG
: a|↓〉|↓〉 + b|↓〉|↑〉 + c|↑〉|↓〉 + d|↑〉|↑〉

→ a|↓〉|↓〉 + eiφGb|↓〉|↑〉 + eiφGc|↑〉|↓〉 + d|↑〉|↑〉. (4)

The gate can be converted into a π -phase gate or a CNOT-
gate in combination with single qubit rotations (as described
in (2) and illustrated in Fig. 10), if we adjust the amplitude
of the state-dependent optical-dipole force appropriately to
achieve φG = π/2. Starting, e.g. with the state |↓↓〉 and
sandwiching this gate between two R(π/2,0) pulses in one
arm of a spin-echo experiment (one additional R(π,0) pulse
centered between the two other R(π/2,0) pulses) applied to
both ions, we are able to produce maximally entangled states
of the form |ψ〉 = |↓↓〉 + |↑↑〉 [22] as presented in Figs. 4
and 5.

We can describe this gate operation in terms of non-
adiabatic spin–spin interaction to relate it to HJ in (1) to

Fig. 4 Evolution of the initialized state |↓↓〉|n = 0〉 in dependence of
the duration of the applied driving force. We embed the coherent mo-
tional excitation in a spin-echo experiment (see Fig. 10), as in [22]. The
motional state returns here close to its ground state in the phase space
of the stretch- and the com-mode after TG = 3.75 µs and its multiples.
Each time the theoretically expected curve (shown as solid line) flat-
tens, we close the circles in phase space (one on the stretch and five
on the com-mode) being equivalent to picking up a total differential
phase of φG = π/2. After 3.75 µs, we achieve approximately the state
(|↓↓〉 − i|↑↑〉)|n = 0〉 while after 15 µs the system returns close to
state |↓↓〉|n = 0〉. The measured contrast in the detected fluorescence
rate is in agreement with the independently determined fidelity of the
gate operation exceeding 95%. Each data point represents the average
of 500 measurements

calibrate J . Since the two sets of states acquire a geometric
phase difference of π/2, we can deduce the related inter-
action amplitude J being proportional to the inverse of the
required gate duration. We have

ei
HJ
�

·t |↓〉1|↓〉2 = ei J
�
σz

1 σz
2 ·t |↓〉1|↓〉2 = e+i J

�
·t |↓〉1|↓〉2;

ei
HJ
�

·t |↑〉1|↓〉2 = ei J
�
σz

1 σz
2 ·t |↑〉1|↓〉2 = e−i J

�
·t |↑〉1|↓〉2.

(5)

To provide the phase-gate operation, the states |↓〉|↑〉
and |↑〉|↓〉 must pick up a phase difference of φG = π/2 [22]
after the duration TG relative to the states |↓〉|↓〉 and |↑〉|↑〉.
According to (5) this requires

2
J

�
· TG = π

2
. (6)

To return to the motional ground state after the operation,
the duration is chosen as TG = 2π/δ, providing

J

�
= δ

8
. (7)

That is, we adjust the laser intensities I1 and I2

(J ∼ Ω2
Rabi ∼ I1 · I2) [2] of the two beams providing the

state-dependent optical-dipole force to turn a conditional
circular path in phase space of one normal mode (e.g. the
stretch mode) within TG.

To realize the QS described in the next section or the re-
lated phase-gate operation we have to stay within the Lamb–
Dicke regime. It requires us to keep the width of the mo-
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Fig. 5 Parity (P↑↑ + P↓↓ − (P↑↓ + P↓↑)) after the duration of the
coherent drive of 3.75 µs, providing an output close to the maximally
entangled state (|↓↓〉 − i|↑↑〉)|n = 0〉. Changing the phase of an ad-
ditional analysis pulse R(π/2, φa) should oscillate the parity twice
within φa out of [0;360] degrees. The contrast c/2 of the best fit to
the data indicated by the solid line provides information about the fi-
delity of the final entangled state preparation as mentioned in the cap-
tion of Fig. 4 and further described in [22]. Each data point represents
the average of 1000 measurements

tional wave function small compared to the effective wave-
length of the optical-dipole force to resolve its conditional-
ity (phase) as illustrated in Fig. 3. The width of the motional
wave function is in first order proportional to the average
motional excitation n̄z, restricting its amplitude to n̄z � 1.

After half the gate operation, the average motional exci-
tation reaches its maximum at n̄z = 1 [22]. In addition, ac-
cording to (7), the ratio of J/δ has to be kept constant. To al-
low for comparably large amplitudes of J necessary for the
QS described in the next section, we have to pick a large de-
tuning δ, since the chosen detuning δstretch = −2π · 266 kHz
red from the stretch-mode frequency ωstretch results in a de-
tuning of δcom = 2π · 1330 kHz blue of the com-mode fre-
quency (ωcom = 2π · 2.18 MHz). The additional coupling
is not negligible anymore. Due to the common motion (in
phase) compared to the relative motion (out of phase) on
the stretch mode, the direction of the loop is reversed. That
is, the phase picked up in phase space of the stretch mode
receives a relative minus sign. Choosing the detuning red
of the stretch mode (δstretch < 0) but blue of the com-mode
(δcom > 0) compensates for this sign again and allows one
to add the contributions of both modes constructively.

In addition, within the gate duration TG = 2π/δstretch, the
system returns to the motional ground state of the stretch
mode after one loop, but simultaneously to the motional
ground state of the com-mode after five loops (δcom = −5 ·
δstretch).

Thus, the amplitude of the spin–spin interaction is com-
posed by two contributions Jsum = Jcom + Jstretch, the geo-

Fig. 6 Simplified illustration of the transition of two spins from para-
magnetic into ferromagnetic order. We initialized the two spins in para-
magnetic order | →→〉. Switching on the effective magnetic field par-
allel to the spin orientation does not affect the paramagnetic order,
the ground state of the Hamiltonian HB in (1). Increasing the effec-
tive spin–spin interaction adiabatically from 0 to |Jmax| � Bx allows
the spins to pass into the new ground state of the system (dominated
by Hamiltonian HJ ), the ferromagnetic order. Ideally, if the evolution
does not get biased, we expect the system to undergo a symmetric tran-
sition into a superposition of the two ferromagnetic orders: a maxi-
mally entangled state of the type (|↓↓〉 + |↑↑〉)

metric phases gained within the two phase spaces have to
add up again to φG = π/2. Similar to (6) we obtain

2
Jstretch + Jcom

�
· TG = π

2
, (8)

with TG = 2π/δstretch the duration for one loop in phase
space of the stretch mode.

The experimental data presented in Figs. 4 and 5 allow to
deduce a fidelity [22] exceeding 95% for achieving the max-
imally entangled state (|↓↓〉 − i|↑↑〉) after TG = 3.75 µs, in
good agreement with the theoretical expectations.

For the laser powers P1,2 of 1.77 and 1.86 mW for the
gate experiment (at beam waists w1,2 of 30 µm and 36 µm)
we deduce a related Jsum = 2π · 33 kHz.

We use the determined Jsum, adapt it to the particular
beam intensities (I1,2 = 2P1,2/(πw2

1,2)) to calibrate the am-
plitude of the spin–spin interaction in our QS. Fundamental
differences of the quantum simulation and the gate opera-
tion of [22] are emphasized at the end of the experimental
section.

3 Simulating the quantum magnet

The implementation of the experimental protocol for our
feasibility study in the case of two spins is realized in the
following way and is further described in [3] and illustrated
in Fig. 6. (1) We prepare the two ions/spins close to the
motional ground state (n̄z ≤ 0.03) for both axial modes via
Doppler- and subsequent sideband cooling and in the inter-
nal state |↓↓〉 via optical pumping. (2) We initialize both
spins via a common R(π/2,−π/2) rotation around the y-
axis in the horizontal plane of the Bloch sphere (see (2)),
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Fig. 7 Evolution of the initialized paramagnetic state | →→〉
= (|↓〉 + |↑〉)(|↓〉 + |↑〉) = (|↓↓〉 + |↓↑〉 + |↑↓〉 + |↑↑〉) in dependence
of the ratio of the amplitudes |J (T )/Bx |. The quantum magnetization
is introduced as the probability to detect the ions/spins in the same state
(ferromagnetic order). It increases to a final value of 98%, in agreement
with the theoretical prediction depicted as solid line. Each data point
represents the average of 1000 measurements

aligned with its x-axis. (3) We switch on an effective mag-
netic field of amplitude Bx via coupling R(2π,0)—not al-
tering the initialized (eigen) state of the system. (4) We
switch on adiabatically the effective spin-spin interaction J

simulated by the state-dependent optical-dipole force pro-
vided by a walking-standing wave along the trap axis. (5) We
read out the average state of the ions/spins.

For further analysis of the fidelity of entanglement in the
final state we add to (4b) another analysis pulse R(π/2, φa)

of variable phase φa , as for the data presented in Fig. 5 of
the final state after the phase-gate operation.

Figure 7 depicts the probability to detect both spins in the
same state after steps (1, 2, 3, 4, 5) of the protocol for the
QS described above. Since the initialized state |→→〉 can
be rewritten in our measurement basis (omitting normaliza-
tion factors) as (|↓〉 + |↑〉)(|↓〉 + |↑〉) = (|↓↓〉 + |↓↑〉 + |↑↓〉
+ |↑↑〉), we expect already a 50% probability P↓↓ + P↑↑
to project this state in either |↓↓〉 or |↑↑〉. The invented
quantum magnetization M = P↓↓ + P↑↑ therefore starts at
0.5 for J (T ) → 0 after the duration of the simulation of
T = 120 µs. For increasing final amplitudes of J (T ) to
Jmax = 2π ·22 kHz and the related ratio of |J (T )/Bx | = 5.2
we deduce a quantum magnetization of M = 0.98. For each
presented data point, we repeat the simulation 500 times for
identical parameters to gain the required statistics. In Fig. 8
we show the probabilities P↑↑ and P↓↓ separately. Minimiz-
ing all bias fields allows us to reveal the unbroken symmetry
of the evolution.

In combination with the parity measurement (step (4b) in
the protocol) we deduce a fidelity of the final entangled state
of 88%.

For comparison we show the results for uncompensated
(or additionally simulated) bias field Bz in Fig. 9. Its contri-

Fig. 8 Symmetric evolution of the initialized state | →→〉 in depen-
dence of the ratio of the amplitudes of interactions |J (T )/Bx | showing
the probabilities P↑↑ and P↓↓ for the two ferromagnetic orders sepa-
rately. The data of the symmetric evolution, i.e. for compensated bias
fields. For comparison, we depict in Fig. 9 the evolution under influ-
ence of a dominating bias field. Each data point represents the average
of 1000 measurements

Fig. 9 Asymmetric evolution of the initialized state | →→〉 in depen-
dence of the ratio of the amplitudes of interactions |J/Bx | under the
influence of a simulated bias field Bz . For bias fields, here related to
stark shifts caused by the laser beams simulating the necessary inter-
actions, we also obtain a final state with aligned spins. But this align-
ment is caused by the (simulated) external field and not due to a mutual
spin-spin interaction. Therefore, the final orientation is biased by close
to 100% into the direction of the simulated field. Each data point rep-
resents the average of 1000 measurements

bution is described via an additional term in (1), HIsing/bias =
HIsing + Hbias where Hbias = Bz

∑
m σz

m.
To put the results of the simulation in the right perspec-

tive compared to the phase-gate operation, we have to em-
phasize their differences. Figure 10 illustrates the experi-
mental protocols, with identical initialization and analysis
fragments. The simulation itself consists of the interactions
applied simultaneously including an adiabatic increase of J

to transfer the system from the former ground state to the
new one. Thus, if we extend the duration of the simulation
the system will remain unchanged.

The phase-gate operation consists of independent strobo-
scopic pulses. The system does not reach a ground state and
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Fig. 10 Symbolized experimental protocols. The initialization and the
analysis/detection can be described in equivalent terms. (a) The sim-
ulation requires both interactions, Bx and J , being applied simulta-
neously, with the amplitude of J increasing adiabatically. (b) The
phase-gate operation is composed by a sequence of individual pulses,
with the conditional coherent drive (which can be related to an isolated
HJ ) embedded in one arm of a spin-echo experiment

therefore oscillates. For continued gate operation, the sys-
tem even returns to its initial state after 4 · TG as to be seen
in Fig. 4.

On the one hand, it has to be noted that the same sim-
ulation can be performed principally on a large amount of
ions/spins at the same time. This might emphasize the sim-
plicity of the simulation in comparison to an increasing
amount of stroboscopic gate operations. On the other hand,
we have to mention that for an increased amount of spins
the requirement of adiabaticity enforces longer simulation
durations related to a longer exposure to decohering distur-
bances.

4 Conclusions and outlook

In the last few years the basic building blocks for a scal-
able architecture of a quantum information processor with
trapped ion qubits have been demonstrated. Although it will
be a nontrivial technological challenge to scale the system to
many qubits, no fundamental limitations seem to exist. On
a shorter timescale interesting problems might be studied
by realizing an analog quantum simulator based on similar
techniques, but with possibly less severe constraints on the
fidelity of operations and the amount of required ions/spins.
We demonstrated the proof of principle experiment that QS
of spin-Hamiltonians can be performed with trapped ions.

We now aim to explore the limits of our feasibility
study in the existing setup by e.g. increasing the amount of
ions/spins in one dimension, investigating the influence of
decoherence and adiabaticity to identify the challenges to
be mastered for extending the simulations to larger quantum
systems [23].

As the next step but to be faced in parallel, we will in-
vestigate the scalability of this approach to two-dimensional

systems (within a feasibility study on two times two
spins [23]). For this purpose, we will have to develop new
micro fabricated cryogenic trapping structures.

Anyway, we hope to take advantage of the miniaturiza-
tion and surface trap technology developed by the com-
munity of QC [21, 24], even though we are pushing to-
wards a different objective: a real two-dimensional array of
traps [23]. We plan to place linear surface ion traps close
enough besides each other to provide stiff and controllable
confinement of each ion individually, but to allow for suffi-
cient Coulomb coupling (simulating e.g. spin–spin interac-
tion) not only between ions confined in the same linear trap,
but also between ions trapped in neighboring traps, close to
a proposal of Cirac [25]. A cryogenic environment will be
necessary to mitigate decohering effects due to the proxim-
ity to surfaces [26].

A comparably small amount of simulation spins, starting
at approximately 10 times 10 ions/spins, might already al-
low one to address problems of interest in solid-state physics
outperforming any future classical computer. For example
investigating spin frustration suspected to be responsible for
high temperature superconductivity [27].

In the mean time and to sharpen the experimental tools
and knowledge and to emphasize the broad spectrum of
physics to be addressed via QS, we should at least men-
tion that there are several other proposals to be investigated.
Simulating effects of relativity like the Dirac equation with
one ion [28] or the production of squeezed states by non-
adiabatically lowering the confining potential simulating the
pair production of particles (here phonons within the ion
crystal) in the early universe [29] or simulating the quantum
random walk within an ion trap [30].
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