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Measurement of quantum memory effects and its fundamental limitations
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We discuss that the nature of projective measurements in quantum mechanics can lead to a nontrivial bias
in non-Markovianity measures, quantifying the flow of information between a system and its environment.
Consequently, in the current form, envisioned applications are fundamentally limited. In our trapped-ion system,
we precisely quantify such bias and perform local quantum probing to demonstrate corresponding limitations.
The combination of extended measures and our scalable experimental approach can provide a versatile reference,
relevant for understanding more complex systems.
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In nature any quantum system inevitably interacts with its
environment [1]. This interaction induces dynamics, which
creates classical and quantum correlations, and will eventually
lead to decoherence and dissipation for observables of the
open system. Common approaches to enable a description
of the open system dynamics involve the approximation
of a Markovian process, i.e., a memoryless time evolution.
However, in many cases this assumption is not justified, and
distinct dynamical features witness underlying non-Markovian
behavior.

The classical definition of non-Markovianity (NM) fails in
the quantum regime due to the special role of measurements
as described by the projection postulate [2]. Recently, several
definitions of quantum NM as well as quantitative measures
have been developed [3–8], see reviews [2,9,10]. The physical
implications of memory effects initiate a variety of appli-
cations for diverse quantum systems and phenomena, e.g.,
Ising or Heisenberg spin chains and Bose-Einstein condensates
[11–13], optomechanical systems [14], chaotic systems
[15,16], quantum dots [17], energy-transfer processes in pho-
tosynthetic complexes [18], and quantum metrology [19]. In
particular, quantum memory measures are discussed to enable
local probing of otherwise inaccessible characteristics of phys-
ical systems, e.g., in the context of Anderson localization [20]
and quantum phase transitions [13,21].

The definition of quantum NM developed in Ref. [4]
features a physical interpretation based on concepts of quantum
information theory. It employs a distance measure in state
space to characterize the distinguishability of quantum states
[22] of the open system. In this context, NM is identified as
a backflow of information to the system, i.e., as an increase
in distinguishability. So far, NM and related initial system-
environment correlations have been experimentally observed
in photonic [23–29], nuclear magnetic resonance [30], and
trapped-ion systems [31].

Trapped atomic ions are well suited to further investigate
aspects of memory effects. Individual control of electronic
and motional degrees of freedom permit the realization of
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effective spins with tunable couplings via or to bosonic degrees
of freedom [32–37]. Techniques for preparation, (coherent)
manipulation, effective interaction, and detection of quantum
states are performed with efficiencies close to unity [33,34,38–
40]. Isolation from surroundings approximates a closed system
with parameters that can be tuned continuously—from a simple
toylike system, still allowing for exact numerical treatment
of pure and mixed states, up to complex system-environment
configurations and interactions [35–37,41–44].

In this Rapid Communication, we study fundamental as-
pects of quantum NM in a trapped-ion system and chal-
lenge current understandings of non-Markovian system-
environment interactions by approaching from a most simple
showcase. We precisely quantify the exchange of information
between an open system and its well-defined quantum environ-
ment with the measure defined in Ref. [4]. Thereby, we reveal
that the nature of projective measurements in quantum me-
chanics can fundamentally limit envisioned applications. We
demonstrate a local quantum probing application to highlight
this phenomenon. We thereby suggest that our system can be
used as a versatile reference for further studies.

To define quantum NM for a system S interacting with its
environment E, the authors of Ref. [4] suggest utilizing the
time evolution of the trace distance D(t) ≡ 1

2‖ρ1
S(t) − ρ2

S(t)‖.
It quantifies the distinguishability of two system states ρ

1,2
S

[22], which are obtained by tracing out the environmental
degrees of freedom. While Markovian processes are defined
by a monotonic decrease in D(t), the characteristic feature
of non-Markovian dynamics is any increase in D(t) [4]. The
accumulated growth of D within a maximal duration tmax,
where D is sampled in steps of �t , is quantified by [4]

N =
tmax∑

t=�t

[D(t) − D(t − �t)]>0. (1)

Explicitly, the sum extends over all positive changes in D(t).
In the following, we consider the NM corresponding to a
representative pair of orthogonal initial states ρ

1,2
S (t = 0). We

note that the choice of the sampling rate γ ≡ 1/�t and 1/tmax

defines the highest and lowest frequencies, respectively, with
which a growth in D can be detected.
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In classical probability theory, there exists a mathematical
condition for stochastic processes to be Markovian in terms
of conditional probability distributions [45]. This definition
cannot be transferred to the quantum regime as quantum
states change discontinuously and randomly conditioned on the
outcomes of projective measurements. In particular, measure-
ments on the open system completely destroy all—classical
and quantum—correlations between system and environment.
Hence, they strongly influence the subsequent dynamics [2].
On one hand, Eq. (1) provides a clear definition for a mea-
sure of quantum NM which is independent of measurement-
induced state changes described by the projection postulate.
On the other hand, measurements are subjected to intrinsic
uncertainties, referred to as quantum projection noise (QPN)
[46]: Consider a superposition state of a two-level system
|ψ〉 ≡ cA |A〉 + cB |B〉 with |cA|2 + |cB |2 = 1. Any projective
measurement transfers |ψ〉 into the pointer basis of the mea-
surement device. For example, if the pointer basis is {|A〉 , |B〉},
the result indicates either |A〉 or |B〉 with probability |cA|2 or
|cB |2, respectively. Consequently, expectation values can only
be determined by averaging r repetitions. The related statistical
uncertainty is proportional to 1/

√
r and persists, even in the

absence of any uncertainty in state preparation. We point out
that the mathematical definition of N translates the QPN into
a systematic bias B. This yields the explicit functional depen-
denceN = N (tmax,γ,r). We regard values with zero QPN and
infinite γ as true values, i.e., Ntrue ≡ limγ,r→∞ N (tmax,γ,r).
We identify B ≡ N − Ntrue to be a nontrivial function of the
particular evolution D(t) and the parameters tmax, γ , and r . In
addition, any kind of noise, including technical or numerical
imperfections, contributes to an excess bias, as remarked in
Ref. [16]. Contrary to common intuition, the overall bias can
continue to increase and lead to less accurate values ofN when
increasing measurement efforts.

In order to investigate properties of non-Markovian quan-
tum dynamics, we consider the following toy system. It is
composed of a single spin-1/2, representing the open system S,
and a bosonic degree of freedom that spans its environment E,
see Fig. 1. The bipartite system S + E is assumed to be isolated
from an additional surrounding X. We write the open system’s
Hamiltonian as HS = h̄ωzσz/2, where σz is the Pauli matrix
with eigenstates |↓〉 and |↑〉 and effective energy splitting h̄ωz

and the reduced Planck constant h̄. The environment is rep-
resented by the Hamiltonian HE = h̄ωEa†a with annihilation
(creation) operators a (a†) and eigenfrequency ωE , and the
Fock states are labeled n. The dynamics of the total system
S + E is governed by the Hamiltonian [35],

H = HS + HE + HI

= h̄ωz

2
σz + h̄ωEa†a + h̄�

2
[σ+eiη(a†+a) + H.c.]. (2)

Here, we express the interaction term HI by the spin coupling
rate �, spin-flip operators σ± ≡ (σx ± iσy)/2, Pauli matrices
σx,y , and the spin-boson coupling-parameter η. We investigate
the evolution of initial product states ρ(0) = ρS(0) ⊗ ρE(0)
with two representative states ρ1

S(0) ≡ |↑〉 〈↑| and ρ2
S(0) ≡

|↓〉 〈↓| and thermal states ρE(0) defined by average occupa-
tion numbers n̄. We choose ρE(0) near the ground state to

FIG. 1. Toy system to study quantum memory effects. Illustration
of the total system, composed of a single spin-1/2, initially in ρ1

S(0) =
|↑〉 〈↑| (the dashed lines) or ρ2

S(0) = |↓〉 〈↓| (the solid lines), and a
bosonic environment, initially in a thermal state with low n̄. (Left)
ρ

1,2
S (t) in the Bloch-sphere representation and (right) related popula-

tions of the n = {0–2} environmental states. Information is transferred
from S to E and into correlations or entanglement (not depicted); the
amount is accounted for by the change of distinguishability D(t) of
ρ

1,2
S (t).

ensure that energies of spin and bosonic degrees of freedom
remain comparable, enabling observations of distinct features
of quantum memory. In Fig. 1, we illustrate an exemplary time
evolution ρ

1,2
S (t) and changes in Fock-state populations that

indicate a transfer of information from S to E.
In our experiment, we implement H with a single trapped

25Mg+. For all measurements, we ensure that residual deco-
herence rates 
dec due to couplings to X (technical noise) are
negligible 
dec � 1/tmax < � (see the Supplemental Material
[47]). Two electronic hyperfine states form S, whereas E is
composed of a motional mode with frequency ωE/(2π ) =
1.920(3) MHz. The coherent S-E interaction HI is imple-
mented via two-photon stimulated Raman transitions [33] with
�/(2π ) ≈ 100 kHz and η ≈ 0.32. More details on implemen-
tation and analysis are described in [47] and Refs. [36,37].
To record D(t), we perform a measurement series of time-
resolved spin-state tomography [33]. Each sequence starts
with the initialization of ρ1

S(0) or ρ2
S(0) with dedicated n̄. We

implement H for variable duration t ∈ [0,9τ ] with τ ≡ 2π/�.
Subsequently, we detect expectation values 〈σl(t)〉 (l = x,y,z)
in individual sequences for each l with fixed r = r0 ≡ 500
and γ = γ0 ≈ 15τ−1. From the recorded 〈σl(t)〉, we determine
ρ

1,2
S (t), the corresponding D(t) and N , and their statistical

uncertainties [47]. To assess systematic effects of our mea-
surements, we compare our data with numerical simulations
of the total system dynamics generated by H , see Refs. [37]
and [47]. We conduct independent calibration measurements
to determine corresponding parameters ωE, ωz, �, and n̄. In
particular, we choose γ and r according to our experimental
realizations to generate numerically simulated values for the
averages 〈σl〉sim. These yield the dispersion of Dsim and values
Nsim that include the effect of the QPN [47]. Additionally,
to estimate Ntrue and, therefore, to quantify B, we perform
numerical simulations. To this end, we consider zero noise
amplitude, equivalent to r → ∞, a sampling rate 100γ0,
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FIG. 2. Features of non-Markovianity. Experimental results (data
points) for D(t) and N , for n̄ = 1.0(1) and ωz ≈ ωE , compared
to Dsim and Nsim (the solid lines), and Dtrue and Ntrue (the dotted
lines). The shaded areas show the effect of the fundamental quantum
projection noise QPN. (a) Non-Markovian behavior is indicated by
increases in D. Systematic deviations of data points [error bars: 1
standard deviation (s.d.)] from Nsim reveal technical imperfections,
whereas systematic deviations due to the QPN remain negligible.
(b) Memory effects are evidenced by increasing N . Noise yields
an increasing bias, predominantly, when amplitudes in the dynamics
become comparable to the QPN amplitudes. Error bars (1 s.d.) depict
correlated statistical uncertainties, and we show representatives only
[47].

and all other parameters fixed according to the experimental
realizations [47].

First, we consider an example to discuss features of recorded
non-Markovian behavior. In Fig. 2, we show measured D

and N (data points) for n̄ = 1.0(1) and resonant interaction
ωz/ωE = 1.000(2) and find good agreement with numerical
simulations (the solid lines). Error bars depict the amount
of QPN, whereas additional experimental uncertainties are
neglected. Information, initially encoded in S, is transferred
to E or S-E correlations, evidenced by decreasing D and
flat N . Memory effects are witnessed whenever D increases,
accounted for by an increase in N . The estimated true numer-
ical results (the dotted lines) deviate from data in D only for
particular durations, indicating residual systematic or technical
effects. In contrast, they increasingly deviate from data in N .
We find that the QPN accumulates a systematic bias in N .
Predominantly, the increases in B occur for durations of near
constant N . Here, amplitudes of the dynamical evolution of D

become comparable to noise amplitudes in D that are a direct
consequence of the QPN.

Next, we present results to investigate N (γ,r) for tmax =
9τ . In Figs. 3(a) and 3(b), we quantify the impact of the QPN
on N as a function of r and γ for the evolution depicted in
Fig. 2. We vary r for fixed γ = γ0 by postselection of random
subensembles of the r0 experimental realizations, generate
resampled evolutions D(t), and evaluate N (γ0,r) [47]. The
results, depicted in Fig. 3(a), agree with corresponding simula-
tions. For increasing r , the results approach the estimatedNtrue.

FIG. 3. Characterizing the bias B(γ,r) for parameters as in Fig. 2
and tmax = 9τ . (a) and (b) Experimental results N (γ,r) (data points),
compared to Nsim (the solid lines) and Ntrue (the dotted lines),
highlight B(γ,r) (the shaded area); error bars omitted for clarity.
(a) We find thatB(γ0,r0)/Ntrue ≈ +17% and it substantially increases
for r < r0 due to the QPN. The bias approaches negative values for
r > r0, indicating that amplitudes of fast dynamics in D are missed
by our choice of γ0. (b) The QPN leads to limγ→∞ B(γ,r0) → ∞,
whereas finite sampling yields negativeB for γ τ < 8. The dashed line
illustrates limr→∞ N (γ,r). (c) The relative bias B(γ,r)/Ntrue reveals
the nontrivial impact of the QPN and sampling on the measurement
of N . The dot marks our choice of (γ0,r0), and the dotted lines
correspond to cuts depicted in (a) and (b).

However, for r � r0, we find a significant underestimation.
To explain this, we vary the mean sampling rate by random
postselection of data points for r = r0 [47] and show N (γ,r0)
in Fig. 3(b). When sampling rates are too low, fast dynamical
features in D are missed, and B < 0 as noted above. However,
sampling rates that approach reasonable values overestimate
Ntrue due to the contribution of the QPN. Figure 3(c) sum-
marizes our findings and illustrates the significant variation of
B(γ,r)/Ntrue and its divergence for increasing γ for practical
(finite) r .

Despite the presence of this bias, we demonstrate in the
following local quantum probing [2] and evaluate the signif-
icance of our results in a system where this remains feasible
by numerical simulations. Based on these results, we propose
that our system can provide a reference for more complex
studies of non-Markovian dynamics. To this end, we present
two paradigmatic examples, where S probes the coupling
to and properties of E. In a first measurement series, we
probe changes in S-E couplings by variation of ωz near ωE

for n̄ = 0.09(2) and determine N (γ0,r0). Figure 4(a) depicts
N (γ0,r0,ωz) for three distinct tmax = {2,5,9}τ ’s. We observe
resonances near ωz ≈ ωE that differ significantly in shape,
depending on tmax. For small tmax, recorded N ’s feature a
double-peak structure. This reflects an expected increase in the
effective coupling rate �′ (faster dynamics) for a detuning from
resonance by δωz ≡ ωz − ωE , which can be estimated by �′ ∝√

�2 + δω2
z . In contrast, for larger tmax, line shapes become
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FIG. 4. Application of local quantum probing. Experimental re-
sults (data points, error bars: 1 s.d.) of N (γ0,r0) for tmax = {2,5,9}τ ’s
(the triangles, squares, and circles), compared to corresponding (the
solid lines) and true (the dotted lines) numerical results. (a) We choose
n̄ = 0.09(2) to ensure elementary quantum dynamics. In turn, D(t)’s
are close to trivial, i.e., sinusoidal with variable frequencies and
amplitudes. We observe a distinct resonance signal near ωz ≈ ωE ,
and different tmax’s give insight on the time scales of information flow.
Contributions of the QPN (the shaded areas) are near constant. (b) We
observe positive and negative slopes in N (n̄) for ωz/ωE = 1.000(2),
reflecting increasingly complex S-E dynamics. Here, the bias varies
with n̄ and tmax and significantly hampers the detection of predicted
features.

dominated by the resonant S-E interaction since amplitudes
in D(t) are ∝�2/�′2, i.e., they are largest for ωz = ωE , cf.
[47]. Comparing our data to Nsim and Ntrue, we estimate
B/Ntrue ≈ 18% on average with small variations, and we can
experimentally resolve predicted features. In a second series of
measurements, we probe the environmental state by tuning the
initial n̄. In Fig. 4(b), we depict experimental and numerical
results of N (γ0,r0,n̄) for tmax = {2,5,9}τ ’s and ωz ≈ ωE and
compare them toNtrue. For short durations, we find an increase
in N (n̄), whereas for longer durations true values suggest a
decrease in N (n̄). We reveal that |B/Ntrue| varies substantially
between 0% and 45%, depending on tmax and n̄. For increasing
n̄, the spin interacts with a larger number of Fock states, and
D(t) features a less trivial frequency spectrum [47]. This results
in a faster and more complex dynamics D(t) that cannot be
resolved with constant significance for fixed γ0 and r0.

Generally, recording N (γ,tmax) can enable observations
of environmental properties on time scales set by γ and
tmax. Finding relevant parameter regimes for specific quan-
tum probing applications is a multidimensional problem that
increases with increasingly complex environments and inter-
actions, in particular, when the system becomes intractable
by numerical simulations. In the case of detection of strong

or robust variations in N , the systematic bias may be less
detrimental. However, we anticipate strategies to still estimate
B and N if an increased accuracy is required. For example,
it can be possible to extrapolate N (γ,r) to r → ∞ guided by
mathematical considerations. Furthermore, an estimation of B
can be achieved by optimizing semiempirical models that, in
turn, are tested to describe recorded N (γ,r) [47] and bench-
marked in our experimental platform. Moreover, applying
filters or regularization methods [51] or fitting Fourier series to
recorded D(t) can allow for isolating relevant dynamics from
noise.

To summarize, we set up our trapped-ion system to im-
plement an effective spin representing an open system, which
we couple to an environment composed of a bosonic degree
of freedom. We investigate the evolution of the trace distance
of two initially orthogonal spin states to study the features of
quantum memory effects. Our results demonstrate that inherent
fluctuations, arising from random projection during the mea-
surement process, yield not only uncertainties, but also a signif-
icant bias in the quantification of such effects. This affects any
experimental platform and even numerical approaches, such as
Monte Carlo simulations. We quantify this bias in our system
to determine accurate values of the quantum NM measure. On
this basis, we employ the open system as a local quantum probe
to explore characteristics of system-environment couplings
and environments. Our experimental platform is ideal to tune
to more complex environments and couplings [37], which
includes adding spin or bosonic degrees of freedom, preparing
a variety of initial environmental states, and engineering
couplings to additional, even classical, surroundings. It can act
as a reference platform studying the intricate relations among
non-Markovian dynamics, fundamental fluctuations, and time
scales in, and beyond, numerically tractable regimes. Thereby,
our approach can aid the understanding of physical systems in
which parameters are less controlled, and other noise sources
contribute substantially to an excess bias.

Furthermore, our findings imply questions concerning gen-
eralizations and applications of NM. The effect of the QPN on
other measures, which are based on, e.g., the divisibility of the
dynamical map [5,6,8] or the mutual information between the
open system and an ancilla system [7], needs to be studied as we
expect them to be significantly influenced by the QPN as well.
Thus, envisioned applications of current NM measures are
fundamentally limited. Consequently, it is required to extend
definitions of NM measures by including physical constraints
and enable a comparison of different systems. Time scales
and the related flow of exploitable information depend on the
application. An upper limit for the sampling rate may be given,
e.g., by the so-called quantum speed limit [52], which, in turn,
would limit the impact of the QPN. Based on such extensions,
applications for characterizing time scales and experimentally
accessible complexity measures may emerge.
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