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Abstract
Direct experimental access to some of the most intriguing quantum phenomena is not granted
due to the lack of precise control of the relevant parameters in their naturally intricate
environment. Their simulation on conventional computers is impossible, since quantum
behaviour arising with superposition states or entanglement is not efficiently translatable into
the classical language. However, one could gain deeper insight into complex quantum
dynamics by experimentally simulating the quantum behaviour of interest in another quantum
system, where the relevant parameters and interactions can be controlled and robust effects
detected sufficiently well. Systems of trapped ions provide unique control of both the internal
(electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction
between the ions allows for large interaction strengths at comparatively large mutual ion
distances enabling individual control and readout. Systems of trapped ions therefore exhibit a
prominent system in several physical disciplines, for example, quantum information
processing or metrology. Here, we will give an overview of different trapping techniques of
ions as well as implementations for coherent manipulation of their quantum states and discuss
the related theoretical basics. We then report on the experimental and theoretical progress in
simulating quantum many-body physics with trapped ions and present current approaches for
scaling up to more ions and more-dimensional systems.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Simulations and deeper understanding of the dynamics of some
tens of interacting spins are already intractable with the most
powerful classical computers. For instance, the generic state
of 50 spin-1/2 particles is defined by 250 numbers and to
describe its evolution a 250×250 matrix has to be exponentiated
[1]. Recently, one of the ten most powerful supercomputers,
JUGENE in Jülich, was exploring this regime. The current
record was set by simulating a system of 42 quantum bits
(qubits), equivalent to 42 spin-1/2 particles [2, 3].

In any case, it will not help to increase the impressive
classical calculation capabilities to simulate only slightly larger
quantum systems. Each doubling of the computational power
will just allow the addition of one spin/qubit to the system
(approximately after two years, according to Moore’s law
[4]). Furthermore, simply pursuing this path of exponential
growth in the computer’s classical capabilities would require
an exponential shrinking of its electronic components4. The
structure size currently amounts to approximately 30 nm, a
distance spanned by roughly 100 atoms. If gifted engineers
further miniaturize the sizes of their structures, ‘currents’ of a
few electrons will ‘flow’ on ‘wires’ spanned by a few atoms
only. As a consequence, quantum effects will have to be
considered for future classical computers, leading to serious
consequences. Electrons charging a capacitor, for example,
currently realize a storage of logical information: a charged
capacitor represents a ‘one’, a discharged capacitor a ‘zero’.
What, if the few electrons, classically well caught within
the potential of the capacitor, follow their natural quantum
mechanical paths and simply escape through the walls by
tunnelling?

However, allowing for quantum effects in a controlled
way might also be exploited as a feature. Richard Feynman
originally proposed [5] using a well controlled quantum system
to efficiently track problems that are very hard to address
on classical computers and named the device a ‘quantum
computer’ (QC). Nowadays his proposal can be seen closer to
the description of a quantum simulator (QS)5. In any case, his
idea has been theoretically investigated and further developed

4 The electronic components are arranged in two dimensions and, only
recently, the third dimension is exploited. However, sufficient cooling has
to be provided.
5 Depending on the context, the abbreviations ‘QC’ and ‘QS’ may also stand
for quantum computation and quantum simulation, respectively.

to the concept of a universal QC. Fulfilling a well-defined set
of prerequisites, known as diVincenzo’s criteria [6, 7], should
make possible running any classical and quantum algorithm by
a stroboscopic sequence of operations. These have to act on
single qubits, for example, changing their state, and on pairs
of qubits performing changes on one qubit, conditional on the
state of its mate.

Hundreds of groups worldwide work on many approaches
in different fields of atomic, molecular and solid-state systems
to realize their version of the envisioned QC. For a concise
review see, for example, [8].

However, even assuming an ideal system and perfect
operations will require the control of the order of 103 logical
qubits as a basis for translating any algorithm or the quantum
dynamics of a complex system into a sequence of stroboscopic
gate operations on a potential universal QC [9]. Residual
decoherence will cause computational errors and must be
minimized to allow for high operational fidelities (∼99.99%–
99.9%) [10]. At present, only then the errors could be
overcome by quantum error correction, at the price of a
reasonable but still tremendous overhead of ancilla qubits,
approximately another 100 per logical qubit. In total, of the
order of 105 qubits are required. Even though there appear to
be no fundamental obstacles for enhancing the fidelities of the
operations and for scaling the size of the systems [11], there
is still challenging technological development ahead. The
realization of a universal QC is not expected within the next
decades.

A shortcut via analogue QS has been taken into
consideration [5] to allow deeper insight into the dynamics of
quantum systems. ‘Analogue’ emphasizes that the dynamics
of the system are not translated into an algorithm of gate
operations on subsets of qubits. In contrast, a system of
quantum particles is required, where (1) the initial state and
its dynamics can be precisely controlled, (2) as many relevant
parameters as possible manipulated and (3) the readout of
the important characteristics of the final state performed in
an efficient way. If the system’s evolution was governed by
a Hamiltonian suspected to account for the quantum effects
of interest, we would be able to experimentally investigate
the physics of interest isolated from disturbances, close to
Feynman’s original proposal. The requirements on the number
of quantum particles and fidelities of operations for analogue
QS are predicted to be substantially relaxed compared with
QC [12]. However, it remains to be investigated which
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realistic assumption on different sources of decoherence in
the particular system will lead to a sufficiently small impact on
the dedicated QS [13]. It is predicted that QS are less prone
to decoherence, for example, in simulating robust effects such
as quantum phase transitions (QPT). Therefore, they do not
require any precautions in contrast to QC, which suffer from
the costly overhead due to quantum error correction. It was
even proposed to establish decoherence as an asset [1]. In this
context, decoherence is not to be seen as a source of errors,
as in the field of universal QC, but as a resource to simulate
its natural counterpart. For example, decoherence is suspected
to be responsible and required for enhanced efficiencies of
(quantum) processes in biological systems at T ∼ 300 K
[14, 15].

To discuss the different requirements for different
analogue QS, we can distinguish between two categories
of simulations. One category deals with problems where
QS provide a simulated counterpart that allows intriguing
questions that are not directly tractable in the laboratory
to be experimentally addressed. Examples are highly
relativistic effects such as Hawking and Unruh radiation or the
zitterbewegung of a freely moving particle predicted by Dirac’s
equation (see also [12]). The second category of simulations
deals with objectives that are (probably fundamentally) not
accessible with classical computation, for example, the
complex quantum dynamics of spins in solid-state systems,
as mentioned above. A promising strategy is to initialize an
analogue QS in a state that can be prepared easily in the system
of choice according to step (1) introduced above. Evolving the
system adiabatically by changing its parameters according to
(2) allows a new state to be reached that is hard or impossible
to reach otherwise, for example, via a QPT. The aim here
is not to simulate the effects including all disturbances and
peculiarities, because the analogue QS would then become as
complex as the system to be simulated. The aim can be to
investigate whether the simplified model still yields the effects
observable in nature and, thereby, to gain a concise deeper
understanding of their relevant ingredients. However, there
remains room for the important discussion as to whether the
specific dynamics emulate nature or simulate the implemented
model (Hamiltonian) and whether the results allow the drawing
of further conclusions.

In any case, it has to be emphasized that analogue QS
are intrinsically not universal. That is, different realizations
of a QS will allow the simulation of different systems. Even
more important, different approaches for the identical models
(Hamiltonians) might allow cross-checking of the validity of
the QSs [16].

There are several systems proposed to implement
analogue QS, offering different advantages [12] to address
the physics in many-body systems. One of them consists
of neutral atoms within optical lattices [17–20]. Another
promising candidate is based on trapped ions [21–23],
originally suggested by Cirac and Zoller in 1995 [24] in the
context of QC. Trapped ions already compete at the forefront of
many fields, were ultimate accuracy and precision is required,
such as metrology (see, for example, [25]). Trapped ions
offer unique operational fidelities, individual addressability

and short- as well as long-range interactions due to Coulomb
forces.

Many models of both categories of QS are promising
candidates or already addressed by trapped ions. Examples for
the first category are emanating from the fields of cosmology
[26–28], relativistic dynamics [29–34], quantum field theory
[35], quantum optics [36] including quantum walks as a
potential tool for QSs [15, 37–40], chemistry [41], and biology
[42, 43]. For the second category, quantum spin Hamiltonians
[21], Bose–Hubbard [22] and spin–boson [44] models were
proposed to describe solid-state systems and their simulation
would allow the observation and investigation of a rich variety
of QPTs [45]. A summary and concise description of
theoretical proposals on QS of both categories based on trapped
ions and first experimental results up to the year 2008 can be
found in [46].

This report aims to describe the current status of the field
of experimental, analogue QS addressing many-body physics,
its challenges and possible ways to address them. The first
proof-of-principle experiment was achieved [47] and extended
recently [48, 49] on a few trapped ions in linear radio-frequency
(RF) traps. The main challenge for QS remains to scale up
towards 50–100 ions or even beyond. A simulated system
of this size would reach far beyond the regime accessible via
classical computation and, even more importantly, allow open
scientific questions to be addressed.

The report is organized as follows. In section 2 we
introduce the tools available for QS by briefly summarizing
the types of traps, different ions species and different technical
implementations of the control of the electronic and motional
degrees of freedom. In section 3 we derive the mathematical
description based on [21, 50, 51]. We aim at extending
the existing formalism to be directly applicable to more
dimensions and individual trapping conditions envisioned
in arrays of ions. We apply this formalism to a basic
building block of QC, a two qubit phase gate on the radial
modes measured in our group, and emphasize similarities
and differences between the application of similar operations
for analogue QS. This section is supplemented by a detailed
appendix. In section 4, we interpret the interactions in
the context of analogue QS, which should be sufficient for
understanding the subsequent discussion of the experimental
implementations without going through the details of section 3.
In section 5, we first depict the proof-of-principle experiments
on a few trapped ions in linear RF traps. Based on the state-
of-the-art capabilities we present in the second part of this
section a summary of proposals to study many-body physics
in a variety of solid-state systems. The two following sections
are dedicated to two proposals aiming for scaling up the
systems. In section 6, we discuss potential realizations of a
two-dimensional array of RF surface-electrode traps. They are
conceptually similar to promising approaches in Penning traps
[50, 52, 53]. We will also introduce an alternative approach
based on ions in optical traps in section 7, thus, trying to
combine the advantages of trapped ions and optical lattices.
Finally, we conclude in section 8.
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Figure 1. Two concepts for trapping charged particles. Both
concepts require electromagnetic fields (blue sinusoidal arrow).
(a) In RF traps, an RF field at frequency �RF/(2π) applied to
quadrupole electrodes (yellow circles) interacts with a charged atom
directly. The time averaged confining pseudopotential allows the ion
to oscillate at frequencies ωX/Y /(2π) approximately an order of
magnitude smaller than �RF/(2π). Since �RF > ωX/Y , the trapping
field can be understood as blue-detuned with respect to the
‘resonance’ frequency ωX/Y , consequently the ion will seek the field
minimum in the centre of the quadrupole (field lines indicated by
black arrows). Typical depths of the pseudopotential are of the order
of kB × 104 K. (b) In optical traps, the optical field is typically
applied via laser beams that provide an intensity dependent ac Stark
shift of the electronic levels of the atom or ion. The frequency �laser

of the laser can be detuned blue (red) with respect to the relevant
electronic resonance frequency ωelectron and therefore forces the
atom/ion to seek low (high) fields. Typical depths of the
pseudopotential are of the order of kB × 10−3 K.

2. Tools required for experimental quantum
simulations

In this section, we describe the requirements to implement
analogue QS based on trapped ions. Most of these tools have
been developed over the last decades, many for the purpose
of quantum information processing (QIP) with the main focus
on QC.

2.1. Ion traps and Coulomb crystals

Isolating and trapping of individual particles as well as the
precise control of their motional (external) degrees of freedom
is key for many high precision measurements. Several trapping
concepts have been developed for and implemented with ions,
such as RF traps [54], Penning traps [55] and optical traps
[56]. The physics of these devices, for example, of RF traps
and optical dipole traps, is closely related. Electromagnetic
multipole fields act on the charge or induce electric dipole
moments. The resulting forces on the particles lead in time
average to a confining pseudopotential. The two concepts are
compared in figure 1.

However, there was a delay of more than a decade between
trapping charged atoms in RF fields [57, 58] and trapping
neutral particles with optical fields [59]. One explanation is
that RF traps provide potential depths of the order of several
eV ≈ kB × 104 K, while optical traps typically store particles
up to kB × 10−3 K only. This discrepancy is mainly due to the

Figure 2. Schematic of the three-dimensional electrode geometry of
a linear RF trap. (a) Cross section through the central quadrupole
electrodes (yellow) providing the radial confinement for the ion
(blue disk). (b) Side view, where segments (grey) are used to apply
dc voltages providing a static potential well along the Z-axis.
Combined with the radial (X, Y ) pseudopotential due to the RF
field, a three-dimensional confinement is achieved. The ion is stored
in ultra-high vacuum and is well protected against disturbances from
the environment. However, the fairly open geometry allows access
to the external (motional) and internal (electronic) degrees of
freedom, for example, with focused laser beams.

comparatively large Coulomb force that RF fields can exert
on charges. The RF field at typical frequencies �RF/(2π) =
10 MHz–100 MHz directly acts on the massive ion. The related
motional frequencies within the deep pseudopotential amount
to a few MHz. Optical fields, in contrast, oscillate more than
six orders of magnitude faster: too fast for the massive atomic
core to follow. In a simplified picture, the optical field has to
induce a dipole moment of the electron and the atomic core
first to allow for a subsequent interaction of the dipole with the
optical field. Similar to RF traps, the optical field results in a
pseudopotential, which is close to identical for neutral atoms
and charged ions [60].

Here we focus first on ions in linear RF traps. The
concept for the radial confinement is depicted in figures 1(a)
and 2. The RF field applied to two opposing electrodes of the
quadrupole can provide a radially confining pseudopotential.
Similar to a quadrupole mass filter, one can find voltages for
given parameters (electrode geometry and mass/charge ratio
of the ion species) that allow for stable confinement in two
dimensions. Additional dc voltages add a static harmonic
potential to complete the three-dimensional confinement that
can be assumed to be harmonic. Dependent on the application,
these dc voltages can be applied to electrodes realized as rings
or needles along the axis or by a segmentation of the quadrupole
electrodes (see figure 2(b)). A confined ion will oscillate with
frequency ωZ/(2π) along the trap axis and with frequencies
ωX/Y /(2π) in the radial directions. The radial oscillation is
superimposed by a fast oscillation at frequency �RF/(2π)

(so-called micromotion), which increases with increasing
distance of the ion from the trap centre, such that the RF field
does not vanish anymore.

Typical parameters for conventional setups are a minimal
ion–electrode distance h ∼ 100 µm –1000 µm allowing for
RF voltages of the order of 1000 V.

Different laser cooling schemes can be applied to reduce
the total energy of motion of the ion [51]. Doppler cooling
[61–64] of several ions already allows a regime to be entered,
where the kinetic energy (kBT ∼ mK) of the ions becomes
significantly smaller than the energy related to the mutual
Coulomb repulsion. Hence, the ions cannot exchange their
position anymore. A phase transition from the gaseous (liquid)
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Figure 3. Fluorescence images of laser-cooled ions in a common
confining potential of a linear RF trap (see figure 2), forming
differently structured Coulomb crystals. (a) A single ion (Mg+).
(b) A linear chain of 40 ions at ωX/Y � ωZ . The axis of the chain
coincides with the trap Z-axis, which is identically orientated in the
rest of the images. (c) A linear chain embedding a two-dimensional
zigzag structure of 60 ions for ωX/Y > ωZ . (d) A three-dimensional
structure of more than 40 ions at ωX/Y � ωZ . The enhanced
signal-to-noise ratio in (d) is achieved by extended exposure.
Structural phase transitions can be induced between one-, two- and
three-dimensional crystals, for example by reducing the ratio of
radial to axial trapping frequencies.

plasma to a crystalline structure occurs [65, 66]. On the one
hand, the resulting Coulomb crystals (see figure 3) provide
many similarities with solid state crystals already partially
explaining why Coulomb crystals appear naturally suited to
simulate many-body physics. (1) The ions reside on individual
lattice sites. (2) The motion of the ions (external degree
of freedom) can be described easiest in terms of common
motional modes with the related quanta being phonons. The
phonons in Coulomb crystals allow long-range interactions to
be mediated between the spins associated with the ions. In
a different context, the phonons can also be interpreted as
bosonic particles, for example, capable of tunnelling between
lattice sites simulated by the ions (see also section 5.2). On
the other hand, there are advantageous differences compared
with solid-state crystals. (3) Coulomb crystals typically build
up in ultra-high vacuum ((10−9–10−11) mbar) and are very
well shielded against disturbances from the environment, thus
providing long coherence times. (4) Coulomb crystals feature
lattice constants of a few micrometres (see figure 3), dependent
on the trapping potential counteracting the mutual Coulomb
repulsion. Compared with a solid, where distances are of the
order of Ångstroms (10−10 m) the density of the structure in
one dimension is reduced by five, in three dimensions by fifteen
orders of magnitude. This allows for individual addressing of
the ions and for individual preparation, control and readout

of their electronic and motional states. (5) The Coulomb
interaction between the charged ions is not shielded within the
crystal, as in Coulomb crystals the charge of all ions has the
same sign in contrast to ionic crystals in solid-state systems.
However, it should be mentioned that, as opposed to quantum
solids, the quantum statistics of the ions is not relevant due to
the suppression of the mutual exchange processes.

It has to be pointed out that it is possible to
deterministically achieve phase transitions between different
structures of Coulomb crystals for large numbers of ions
[65, 66]. When the ratio of radial to axial confinement is
reduced or the number of confined ions is increased, we
observe the transition from a linear chain of ions via a two-
dimensional zigzag structure to a three-dimensional structure
(see figures 3(b)–(d)).

Despite the unique conditions in Coulomb crystals in
linear RF traps and the high fidelities of operations, current
experimental approaches to QS (and QC) are still limited
to a small number of ions. The approaches include of the
order of ten ions arranged in a linear chain [49, 67]. This
is accomplished by choosing the radial confinement much
stronger than the axial one. The linear chain orientates along
the weakest (Z) direction, where tiny oscillations of the cooled
ions around the minimum of the pseudopotential (X and Y ) and
thus micromotion still remains negligible.

For the purposes of a QC and QS, scaling to a larger
number of spins and more dimensions while keeping sufficient
control over all required degrees of freedom remains the
challenge of the research field. Using longer linear chains
confined in anharmonic axial potentials [68] might provide a
way to reach a number of ions in the system that in principle
already exceeds capabilities of a classical supercomputer.
Another way might be the use of RF ring traps offering periodic
boundary conditions for static Coulomb crystals [65, 66] and
even (more-dimensional) crystalline beams of ions [69–71].
A microfabricated ring trap is currently being developed and
fabricated at Sandia National Laboratories [72].

The two main limitations for further scaling of the number
of ions in a common potential, from a practical point of view,
are (1) the emergence of 3N normal modes for N ions plus their
sum and difference frequencies that lead to an increasingly
crowded phonon spectrum (already for each spatial dimension
separately). Individual spectral components become difficult
to identify and off-resonant couplings to ‘spectator’ transitions
[50] are hard to avoid. However, under certain conditions, QSs
are predicted to allow for coupling to all modes simultaneously,
see for example [21]. (2) QSs based on ions in large,
more-dimensional Coulomb crystals suffer from additional
challenges, for example, intrinsic micromotion (due to the
displacement from the minimum of the pseudopotential), an
inhomogeneous ion spacing (due to space charge effects) and
the coupling between modes of all three spatial dimensions.

One approach for scalability might be to generate a spin-
off from the QIP community based on their new concept
of a surface-electrode geometry for RF traps [73, 74] (see
figure 14). Currently, this design is tested with the aim to allow
for networks of interconnected linear traps. This constitutes
a promising possibility to realize the multiplex architecture of
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memory and processor traps for universal QC [75]. However,
for QS we need a miniaturized array of traps allowing for more-
dimensional interactions, as discussed in section 6.

It has to be emphasized that there are other concepts for
trapping ions, a prominent one being Penning traps. Penning
traps provide trapping potentials of similar parameters as RF
traps. A strong, static magnetic field and a dc electric field
yield a stable confinement of large, rotating Coulomb crystals.
Storing many cool ions in a Penning trap, naturally provides,
for example, a large triangular lattice of ions [76–78] that is
also predicted to be well suited for QS [79]. Promising results
are on their way [52, 53]. Another challenging proposal for QS
involves trapping ions optionally simultaneously with atoms in
optical lattices [80] (see section 7).

2.2. Ions

A large variety of different atomic ions have already been
used for the purpose of QIP. Every ion or, more specifically,
every isotope has different properties, for example, regarding
the level scheme or the charge–mass ratio, and thus can meet
different requirements of a QS. However, they all have a single
valence electron leading to an alkali-like level scheme. Most
prominent are the earth alkali ions Be+, Mg+, Ca+, Sr+ and Ba+.
A similar electronic structure has Zn+, Cd+ and Hg+, followed
by Yb+ [81].

Typically, two electronic levels with sufficiently long
coherence times are chosen as qubit or spin states |↓〉 and
|↑〉, respectively. (In principle, however, the restriction to two
states is not required and the use of up to 60 states has been
proposed for (neutral) holmium [82].) The types of qubits can
be divided into two classes: in optical qubits, the states are
encoded in two states with a dipole-forbidden transition at an
optical frequency. An example is 40Ca+ with |↓〉 := |S1/2〉
and |↑〉 := |D5/2〉. The lifetime of |↑〉 is on the order of
1 s, which defines the upper bound for its coherence time. In
hyperfine/Zeeman qubits, two sublevels from the ground state
manifold are chosen as |↓〉 and |↑〉. An applied magnetic field
lifts the degeneracy within the manifolds of electronic levels to
allow for spectrally resolving the dedicated states. The states
of hyperfine/Zeeman qubits have extremely long lifetimes and
coherence times on the order of minutes have been observed
[83, 84]. As an example for a hyperfine/Zeeman qubit, an
excerpt of the level scheme of 25Mg+ is shown in figure 4. The
transition frequencies in hyperfine/Zeeman qubits are in the
microwave regime.

2.3. Basic operations

The quantized oscillation of the ions in the harmonically
approximated potential of the trap gives rise to motional
states, which are typically expressed in terms of Fock states
|n〉. Independent of the choice of qubit we will require three
different types of couplings to electronic states and/or motional
states to assemble the toolbox for QC and QS based on trapped
ions (for details see section 3).

(a) Coupling of the electronic states only (|↓〉|n〉 � |↑〉|n〉).
This operation can be used to implement Rabi flops
between the electronic states and serves as a one-qubit gate

Figure 4. Excerpt of the level scheme of 25Mg+ as an example of a
hyperfine qubit (not to scale). 25Mg+ has a nuclear spin of I = 5/2
and thus a hyperfine-split ground state (S1/2, F = 3 and S1/2,
F = 2). By applying a static magnetic field of a few Gauss, the
degeneracy of the Zeeman sublevels is lifted. The Doppler cooling
laser (labelled ‘BD’) is σ + polarized and detuned red by
�/2 ≈ 2π × 20 MHz from the cycling transition S1/2, F = 3,
MF = 3 ↔ P3/2, F = 4, MF = 4. Here, � denotes the linewidth of
the P levels. The level |↓〉 := |S1/2, F = 3, MF = 3〉 and the level
|↑〉 := |S1/2, F = 2, MF = 2〉 are chosen as qubit states or
(simulated) spin states, respectively. The ion is optically pumped
into |↓〉 during cooling. The electronic state is read out by a variant
of ‘BD’, which is resonant on the cycling transition. Hence, an ion
in the state |↓〉 will fluoresce, while an ion in state |↑〉 is
off-resonant by almost 50� and will remain dark. The motional
states of one of the motional modes are indicated as ‘ladders’ on top
of the electronic states. Two laser beams (labelled ‘Raman’)
detuned by � from the P3/2 level can be used to drive two-photon
stimulated-Raman transitions between |↓〉 and |↑〉. A flop on the
first red sideband is indicated by the arrows from |↓〉|2〉 → |↑〉|1〉.

of a potential QC. In the context of QS it can be interpreted
as simulated magnetic field (see also section 3.2).

(b) Coupling of the electronic and motional states (|↓〉|n〉 �
|↑〉〉|n′〉). This operation can drive Rabi flops between
electronic states and different motional states, for example
on the first red (n′ = n − 1) or blue sideband (n′ = n + 1)
(see also section 3.2). It can be used to create entanglement
between the electronic and motional states and is an
important ingredient for both sideband cooling and the
readout of the motional state (see below).

(c) State-dependent forces (for example, |↓〉|n〉 →
|↓〉|n + 1〉). These forces lead to state-dependent
displacements. They can be used for conditional
interactions between multiple ions, which are exploited
for quantum gates (see sections 3.3 and 3.4) or effective
spin–spin interactions in the simulation of quantum spin
Hamiltonians (see section 3.5).

Operations (a)–(c) can be realized for both classes of
qubits in the optical regime and for hyperfine/Zeeman qubits
additionally via microwave fields [50, 51].
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Figure 5. Implementations of different interaction types for
hyperfine/Zeeman qubits. (a) An operation of type (a) can be
implemented, for example, by two-photon stimulated-Raman
transitions driven by a pair of laser beams (shown without motional
dependence) or directly by a microwave field. These types of
interactions can be used for single-qubit gates in QC and to simulate
the effective magnetic field in the simulation of quantum spin
Hamiltonians. (b) State-dependent forces (see type (c) in the text)
can be created by two beams detuned by approximately the
frequency of a motional mode. This interaction is used in the
geometric phase gate for the displacement pulse [110, 123] or in the
simulation of the quantum Ising Hamiltonian to create the effective
spin–spin interaction [21, 47].

Coupling via optical fields. Optical qubit states can be linked
by a single, nearly resonant laser beam with frequency ωI

and wave vector �kI. Due to the lifetime of the |↑〉 state of
1/� ∼ 1 s, the linewidth of the laser has to be very narrow
(∼1 Hz). Operations (a) and (b) can be implemented directly
(see section 3.2). State-dependent forces (c) can be provided
by a bichromatic light field (see, for example, [85–87] and also
section 3.3).

In hyperfine/Zeeman qubits, the single laser beam can
be substituted by two beams with frequencies ω1, ω2 and
wavevectors �k1, �k2 driving two-photon stimulated-Raman
transitions. The beams are detuned by � � � from a
third level, for example, a P level (compare figure 4) with a
typical lifetime 1/� of the order of few nanoseconds. In the
mathematical treatment, this third level can be adiabatically
eliminated for large detunings and the interaction gains the
form of an interaction with a single beam of frequency ωI =
|ω1 − ω2| and wavevector �kI = �k1 − �k2. The requirement
of a narrow linewidth holds only for the difference frequency
ωI, which can be fulfilled comparatively easily: the two beams
can be generated from the same laser using acousto-optical
modulators driven by a stable microwave source, while the
requirements on the frequency stability of the laser are relaxed.
For operation (a), the frequency ωI has to (approximately) meet
the transition frequency of the qubit states (see figure 5(a)).
For operation (b), �kI in addition must not vanish to achieve
a sufficient momentum transfer to the ions, see figure 4 and
section 3.2. Therefore, the two beams are typically orthogonal
(|�kI| ≈ √

2|�k1|) or counter-propagating (|�kI| ≈ 2|�k1|). The
state-dependent forces (c) can be implemented by nearly
resonant beams (ωI ≈ 0) and beam geometries as for operation
(b) (see figure 5(b), sections 3.3–3.5 and section 4).

The main technical drawback of using two-photon
stimulated-Raman transitions is decoherence due to

spontaneous emission after off-resonantly populating the third
level. This limitation can be mitigated by increasing the detun-
ing � and the intensities I1/2 of the beams, since the interaction
strength scales with I1/2/�, while the spontaneous emission
rate scales with I1/2/�

2.

Coupling via microwave fields. Alternatively, transitions
between the electronic states in hyperfine/Zeeman qubits can
be driven laser-less by microwave fields. This allows the direct
realization of operation (a). However, due to the comparatively
long wavelength and the related small momentum transfer
(|h̄�kI| → 0), only negligible coupling to the motional modes
can be achieved directly and additional efforts are required
to provide operations (b) and (c) [88, 89]: by applying a
static magnetic field gradient along the axis of an ion chain,
the transition frequency between |↓〉 and |↑〉 becomes site-
dependent due to position-dependent Zeeman shifts. The
ions can be individually addressed by applying microwave
fields with these site-dependent frequencies ωI. In addition,
this causes state-dependent forces as in the Stern–Gerlach
experiment and allows for coupling to the motional modes. The
main challenge here is to provide sufficiently large magnetic
field gradients and to cope with state-dependent transition
frequencies, if high operational fidelities are required (see, for
example, [90]).

As an alternative to the static magnetic field gradients,
alternating magnetic fields due to microwave currents in
electrodes of surface-electrode traps (see section 6) have been
proposed [91] and first promising results have been achieved
[92, 93]. Due to the small height of the ion above the electrode
in this type of trap, a sufficiently large ac Zeeman shift can be
generated, which can be treated analogously to the ac Stark
shift created by laser beams in two-photon stimulated-Raman
transitions discussed above. However, the small height above
the electrodes leads to further challenges (compare section 6)
and high microwave powers are required.

2.4. Initialization and readout

Initialization of motional and electronic states. The
initialization into one of the qubit states, for example |↓〉,
can be achieved with near-unity efficiency by optical pumping
[94]. Regarding the motional modes, the initialization
includes Doppler cooling in all three dimensions leading
to a thermal state with an average phonon number n̄ of
typically a few to ten quanta. This pre-cooling is required
to reach the Lamb–Dicke regime (see section 3.2), where
subsequent resolved sideband cooling [95–97] or cooling
utilizing electromagnetically induced transparency can be
applied [98, 99]. These cooling schemes lead close to the
motional ground state |0〉 (n = 0 with probability of 98%
in [97]) of the dedicated modes.

Readout of electronic and motional states. We distinguish
the two electronic states by observing state-dependent laser
fluorescence. The dipole allowed transition to an excited state
starting in the state |↓〉 is driven resonantly (see the transition
labelled ‘BD’ in figure 4) in a closed cycle completed by
spontaneous emission back to the state |↓〉 due to selection
rules. For state |↑〉 the detection laser is off-resonant. The ion
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therefore appears ‘bright’ for |↓〉, while it remains ‘dark’ for
|↑〉 [100–103]. Typically, a few per mill of the scattered
photons are detected by a photomultiplier tube or a CCD
camera. The fidelity of this detection scheme has been
shown experimentally to exceed 99.99% for averaged and even
individual measurements [104, 105]. However, additional
possibilities to enhance the detection efficiency, for example
by methods developed for QC using ancilla qubits [106–108],
cannot be applied to analogue QS, since all ions participate
during the simulation. For the detection of the motional state,
it can be mapped to the electronic state via an operation of
type (b) and derived from the result of the spin state detection
described above [109].

3. Theoretical excursion

The following calculations (section 3.1 and 3.2) are the
mathematical description of the toolbox that is available for
both QCs and QSs. Detailed discussions can be found, for
example, in [50] or [51]. We summarize important equations
in the following and extend the mathematical description
to be applicable to scaled approaches of QSs, for example,
two-dimensional arrays of ions in individual traps. We will
continue with the description of an implementation of the
effective spin–spin interaction for ions appearing in quantum
spin Hamiltonians. In order to investigate it isolated from
other interactions, we will first discuss it from the point of
view of quantum gates [110] in sections 3.3 and 3.4. Finally,
in section 3.5, we use all tools to derive and discuss the
quantum Ising Hamiltonian based on [21] as an example. The
mathematical descriptions will be required to pursue proposals
described in section 5.2.

This section aims at deriving the mathematical treatment
of the simulation of a quantum Ising Hamiltonian. It underlines
the approximations and transformations applied in these
calculations and discusses the related corrections compared
with the ideal quantum Ising model, which grow in importance
in regard to scaled systems described in section 6. Readers who
are more interested in a pictorial description of the simulation
of a quantum Ising Hamiltonian may skip this section and
continue to section 4.

3.1. Theoretical basics

In the following we consider two-level systems only. The
Hamiltonian describing the energy of the electronic states of
N such systems is given by

Ĥe =
N∑

i=1

h̄ω↑↓
2

σ̂ (i)
z + Nh̄

ω↑ + ω↓
2︸ ︷︷ ︸

=const (omitted)

, (3.1)

where h̄ω↑/↓ denote the energies of the states |↓〉 and |↑〉,
respectively, ω↑↓ := ω↑ − ω↓, and the operator σ̂ (i)

z the Pauli
operator (compare appendix B, equation (B.1)) acting on the
ith ion.

The ions are considered to be trapped in a common
harmonic potential or several individual potentials, which
can be approximated to harmonic order. The corresponding
Hamiltonian in terms of the normal modes of the oscillation

reads

Ĥm =
3N∑

m=1

h̄ωm

(
â†

mâm +
1

2

)
. (3.2)

Here, âm and â†
m are the annihilation and creation operators

of the mth mode, respectively, and ωm the corresponding
frequency. In the following, the constant terms h̄ωm/2 will also
be omitted and the abbreviation Ĥ0 := Ĥe + Ĥm will be used.

An interaction of an ion with the electric field �E of a laser
beam is described by −�̂µ· �E(�r, t), where �̂µ denotes the electric
dipole operator for the transition |↓〉 ↔ |↑〉 and �E(�r, t) the
field at the site of the ion. The Hamiltonian describing the
interaction of the field with N ions becomes

ĤI =
N∑

i=1

h̄�
(i)
I

(
ei(�k(i)

I ·�̂r(i)−ωIt+ϕ
(i)
I ) + h.c.

)
κ̂ (i). (3.3)

Here, �
(i)
I = −µE(i)/2 ∈ R is the interaction strength at

site i, �k(i)
I the wavevector at site i, �̂r(i)

the position of the ith
ion, ωI the frequency of the field and ϕ

(i)
I an additional phase.

In the most general form, the operator κ̂ (i) can be expressed as
a linear combination of Pauli operators σ̂

(i)
x/y/z and the identity

operator 1̂1
(i)

(see appendix B):

κ̂ (i) := α01̂1
(i)

+ α1σ̂
(i)
x + α2σ̂

(i)
y + α3σ̂

(i)
z , (3.4)

with the prefactors αj ∈ R, which are determined by the
polarization of the electric field and angular momenta of the
states encoding |↓〉 and |↑〉 (see also section 3.4 for some
examples).

The position operator �̂r(i)
in equation (3.3) is decomposed

into the equilibrium position �x(i)
0 and the displacement �̂x(i) =

�̂r(i) − �x(i)
0 . The terms �k(i)

I · �x(i)
0 give rise to a constant phase,

which we absorb into ϕ
(i)
I + �k(i)

I · �x(i)
0 → ϕ

(i)
I .

The displacement of the ion from its equilibrium position

�̂x(i)
is expressed in terms of the normal modes of motion

�̂x(i) =
3N∑

m=1

(
bm,i q̂m�eX + bm,i+N q̂m�eY + bm,i+2N q̂m�eZ

)
, (3.5)

where bm,i are the elements of an (orthogonal) transformation
matrix (compare appendix A, equation (A.8)). Expressing the
operators q̂m of the normal modes in terms of the creation and
annihilation operators yields

q̂m = qm0
(
âm + â†

m

)
with qm0 :=

√
h̄

2Mωm

, (3.6)

where M denotes the mass of one ion. Hence, the scalar
product appearing in the Hamiltonian yields

�k(i)
I · �̂x(i) =

3N∑
m=1

η(i)
m

(
âm + â†

m

)
, (3.7)

where the Lamb–Dicke parameter of the mth mode and ith site
has been introduced:

η(i)
m := qm0

(
bm,i

�k(i)
I · �eX + bm,i+N

�k(i)
I · �eY + bm,i+2N

�k(i)
I · �eZ

)
.

(3.8)

8
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To summarize, the interaction term of the Hamiltonian
gains the form

ĤI =
N∑

i=1

h̄�
(i)
I

(
e

i
[∑3N

m=1 η
(i)
m (âm+â†

m)−ωIt+ϕ
(i)
I

]
+ h.c.

)
κ̂ (i).

(3.9)

The transformation into the interaction picture

Ĥ′
I = Û

†
0 ĤIÛ0 with Û0 := e−iĤ0t/h̄ (3.10)

can be carried out for each site separately, hence

Ĥ′(i)
I = Û

(i)†

0 Ĥ(i)
I Û

(i)
0 with Û

(i)
0 := e−iĤ(i)

0 t/h̄, (3.11)

where Ĥ(i)
I is the Hamiltonian corresponding to the ith ion and

ĤI =∑N
i=1 Ĥ(i)

I .
The operator κ̂ (i) (equation (3.4)) related to the electronic

states reads as follows in the interaction picture (compare
equation (B.15)):

κ̂ ′(i) = eiω↑↓t σ̂
(i)
z /2κ̂ (i)e−iω↑↓t σ̂

(i)
z /2 (3.12)

= 1

2

[
α01̂1

(i)
+
(
α1 +

α2

i

)
eiω↑↓t σ̂ (i)

+ + α3σ̂
(i)
z

]
+ h.c.

(3.13)

Here, we introduced σ̂
(i)
+ := σ̂ (i)

x +iσ̂ (i)
y and σ̂

(i)
− := σ̂ (i)

x −iσ̂ (i)
y .

The terms in equation (3.9) containing the motional
operators transform as follows (compare equation (C.10)):

eiωmtâ†
mâmeiη(i)

m (âm+â†
m)e−iωmtâ†

mâm

= exp
(
iη(i)

m

[
âme−iωmt + â†

meiωmt
])

. (3.14)
Hence, it yields the following expression for the complete
Hamiltonian in the interaction picture:

Ĥ′(i)
I = h̄�

(i)
I

{
exp

(
i

[
3N∑

m=1

η(i)
m (âme−iωmt + â†

meiωmt )

− ωIt + ϕ
(i)
I

])
+ h.c.

}
κ̂ ′(i). (3.15)

At this point fast rotating terms which average out on short
timescales are neglected (rotating wave approximation, RWA).
For �

(i)
I � ω↑↓ we distinguish between two cases: In the

first case, ωI � ω↑↓, terms containing e±iω↑↓t are neglected
(see figure 5(b) for an example of an implementation). (If
α1 = α2 = 0, nothing will change and the Hamiltonian will
still be exact.) In the second case, |ωI −ω↑↓| � ω↑↓, all terms
but e±i(ω↑↓−ωI)t are neglected (see figure 5(a)):

Ĥ′(i)(RWA)
I = h̄�

(i)
I exp

(
i

[
3N∑

m=1

η(i)
m (âme−iωmt + â†

meiωmt )

− ωIt + ϕ
(i)
I

])(
α01̂1

(i)
+ α3σ̂

(i)
z

)
+ h.c.

for ωI � ω↑↓, (3.16)

Ĥ′(i)(RWA)
I = h̄

2
�

(i)
I exp

(
i

[
3N∑

m=1

η(i)
m

(
âme−iωmt + â†

meiωmt
)

− (ωI − ω↑↓
)
t + ϕ

(i)
I

])(
α1 +

α2

i

)
σ̂ (i)

+ + h.c.

for |ωI − ω↑↓| � ω↑↓. (3.17)

3.2. σ̂x/σ̂y interaction

The time evolution corresponding to Ĥ′(i)(RWA)
I in equa-

tion (3.17) is involved. The time evolution is calculated for
a single ion i and a single motional mode m, for example,
in [50, 51]. As some simplifications (Lamb–Dicke regime, see
below) are not always justified for experiments, we will sum-
marize this calculation here. (The index m is skipped in this
section.)

In this case the Hamiltonian simplifies to

Ĥ′(RWA)
I = h̄

2
�I exp(i[η(âe−iωt + â†eiωt ) − (ωI − ω↑↓)t + ϕI])

×
(
α1 +

α2

i

)
σ̂+ + h.c. (3.18)

Writing the state vector in the basis of electronic states |s〉 and
motional Fock states |n〉,

|ψ(t)〉 =
∑

s∈{↓,↑}

∑
n

cs,n(t)|s, n〉, (3.19)

the Schrödinger equation yields

ih̄ċs ′,n′(t) =
∑

s∈{↓,↑}

∑
n

〈s ′, n′|Ĥ′(RWA)
I |s, n〉cs,n(t). (3.20)

Matrix elements of the Hamiltonian vanish for s ′ = s.
We obtain for the non-vanishing matrix elements [95, 111]
(compare appendix D)

〈↑, n′|Ĥ′(RWA)
I |↓, n〉 = h̄

2
�Ie

i(−(ωI−ω↑↓)t+ϕI)
(
α1 +

α2

i

)
×〈n′|D̂ (iηeiωt

) |n〉〈↑ |σ̂+| ↓〉
= h̄�n′,n

(
α1 +

α2

i

)
i|n

′−n|ei([(n′−n)ω−(ωI−ω↑↓)]t+ϕI), (3.21)

where D̂(λ) := eλâ†−λ∗â denotes the displacement operator
and

�n′,n := �Ie
−η2/2η|n′−n|

√
n<!

n>!
L(|n′−n|)

n<
(η2). (3.22)

Here, L(α)
n (x) are the associated Laguerre polynomials, n< :=

min(n′, n), and n> := max(n′, n). Analogously, we obtain
〈↓, n|Ĥ′(RWA)

I | ↑, n′〉 = 〈↑, n′|Ĥ′(RWA)
I | ↓, n〉∗.

We define δ := (ωI−ω↑↓)−(n′−n)ω. For small detunings
|δ| � ω and interaction strengths

∣∣�n′,n
∣∣ � ω (resolved

sideband regime), we apply an RWA neglecting terms rotating
faster than e±iδt . Equation (3.20) can then be solved for each
subset |n′, ↑〉 and |n, ↓〉 separately:

ċ↑,n′(t) = −i�n′,n

(
α1 +

α2

i

)
i|n

′−n|e−i(δt−ϕI)c↓,n(t), (3.23)

ċ↓,n(t) = −i�n′,n

(
α1 +

α2

i

)∗
(−i)|n

′−n|ei(δt+ϕI)c↑,n′(t).

(3.24)

The solution of the system of differential equations yields
Rabi oscillations between the states |↓, n〉 ↔ |↑, n′〉 (compare
appendix E):
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(
c↑,n′(t)

c↓,n(t)

)
=



(

cos(Xn′,nt) +
δ

2

i

Xn′,n
sin(Xn′,nt)

)
e−iδt/2 Yn′,n

Xn′,n
sin(Xn′,nt)e

−iδt/2

− Y ∗
n′,n

Xn′,n
sin(Xn′,nt)e

iδt/2

(
cos(Xn′,nt) − δ

2

i

Xn′,n
sin(Xn′,nt)

)
eiδt/2



(

c↑,n′(0)

c↓,n(0)

)
(3.25)

with Yn′,n := −i�n′,n(α1 + α2/i)i|n
′−n|eiϕI and Xn′,n :=√

(δ2/4) + |Yn′,n|2.
In the Lamb–Dicke regime, η〈(â + â†)2〉1/2 � 1,

equation (3.22) can be expanded to first order in η:

�
(LDR)
n−1,n = �Iη

√
n (first red sideband), (3.26)

�(LDR)
n,n = �I (carrier), (3.27)

�
(LDR)
n+1,n = �Iη

√
n + 1 (first blue sideband). (3.28)

Successive red sideband transitions |↓〉|n〉 → |↑〉|n − 1〉
followed by dissipative repumping to |↓〉|n − 1〉 with high
probability are routinely used for sideband cooling close to the
motional ground state |n = 0〉 [95–97].

If the Lamb–Dicke parameter becomes effectively zero,
the motional dependence will vanish (see equations (3.26) and
(3.28)). The only remaining transition is the carrier transition
equation (3.27) affecting the electronic states only. This
is the case, for example, for two-photon stimulated-Raman
transitions with co-propagating beams or for microwave driven
transitions in hyperfine qubits, where �kI ≈ 0. In systems with
more than one ion, the ions will not be motionally coupled.
That is why equation (3.25) also holds for each site separately
in such systems.

Equation (3.25) simplifies for resonant carrier transitions
(δ = 0) and a pure σ̂x interaction (α1 = 1 and α2 = 0):(

c↑,n(t)

c↓,n(t)

)
= R̂(ϑ, ϕ)

(
c↑,n(0)

c↓,n(0)

)
, (3.29)

where

R̂(ϑ, ϕ) :=
(

cos(ϑ/2) −ieiϕ sin(ϑ/2)

−ie−iϕ sin(ϑ/2) cos(ϑ/2)

)
, (3.30)

ϑ := 2�n,nt and ϕ := ϕI. The rotation matrix R̂(π/2, ϕ)

describes a π/2-pulse and R̂(π, ϕ) a π -pulse with phase ϕ.

3.3. Effective σ̂z ⊗ σ̂z interaction

We will now discuss the case of equation (3.16) with α1 =
α2 = 0. Hence, we omit the superscript of the Hamiltonian
indicating an RWA. In the Lamb–Dicke regime, η(i)

m 〈(âm +
â†

m)2〉1/2 � 1, the Hamiltonian can be expanded to first

order in the Lamb-Dicke parameters η(i)
m . A subsequent RWA

neglecting terms rotating faster than e±iδmt with δm := ωI −ωm

yields

Ĥ′(i)(LDR)
I = h̄�

(i)
I e

i
(
−ωIt+ϕ

(i)
I

)

×
[

1 + i
3N∑

m=1

η(i)
m

(
âme−iωmt + â†

meiωmt
)]

×
(
α01̂1

(i)
+ α3σ̂

(i)
z

)
+ h.c. (3.31)

⇒ Ĥ′(i)(LDR)(RWA)
I = ih̄�

(i)
I

3N∑
m=1

η(i)
m ei(−δmt+ϕ

(i)
I )â†

m

×
(
α01̂1

(i)
+ α3σ̂

(i)
z

)
+ h.c. (3.32)

Note that equation (3.32) breaks up into a sum over terms that
depend on only one mode m and one site i each.

With the excursion in appendix F the total time evolution
operator in the interaction picture reads

Û
′(LDR)(RWA)
I (t, t0) = exp

(
i

[
N∑

i=1

3N∑
m=1

�
(i)
I η(i)

m

δm

(e−iδm(t−t0) − 1)e−iδmt0 eiϕ(i)
I â†

m

(
α01̂1

(i)
+ α3σ̂

(i)
z

)
+ h.c.

])

× exp

(
−i

N∑
i=1

N∑
j=1

3N∑
m=1

�
(i)
I �

(j)

I η(i)
m η

(j)
m

δ2
m

(
α01̂1

(i)
+ α3σ̂

(i)
z

)
⊗
(
α01̂1

(j)
+ α3σ̂

(j)
z

)

×
[
δm(t − t0) cos

(
ϕ

(i)
I − ϕ

(j)

I

)
− sin

(
δm(t − t0) −

(
ϕ

(i)
I − ϕ

(j)

I

))])
. (3.33)

The interaction described by equation (3.33) can be interpreted
as follows: the first exponential function has the form of a
displacement operator D̂(λ) = eλâ†−λ∗â , which leads to a
displacement of a coherent state by λ in phase space. Due to the
(e−iδm(t−t0) − 1) proportionality of the exponent, the trajectory
for a coherent state of each mode describes a circle in phase
space (or a straight line in the limit δm = 0). The coherent
state returns to its initial position at times Tm = 2πl/δm with
l ∈ N, where the exponent vanishes. The second exponential
can be expanded into a σ̂z ⊗ σ̂z interaction, a σ̂z interaction
and a global phase. The σ̂z ⊗ σ̂z terms give rise to a geometric
phase, which increases in time t , and the σ̂z terms lead to a
dynamic phase [112, 113]. The area in phase space enclosed
by the trajectory is proportional to these phases.

3.4. Geometric phase gates

The collective interaction of multiple ions with the same
laser(s) has been proposed for the implementation of quantum
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gates [85, 114–117]. These gates are described in the z-
basis by equation (3.33) and have been first implemented
in [110, 118]. Mølmer–Sørensen gates can be mathematically
treated analogously in a rotated basis and are described in detail
in [86, 87]. Implementations are reported in [119–122].

We will exemplarily discuss geometric phase gates based
on the σ̂z ⊗ σ̂z terms in equation (3.33) in the following. They
offer excellent tools to investigate a pure σ̂z ⊗ σ̂z interaction
required for the simulation of more involved Hamiltonians such
as quantum spin Hamiltonians. The geometric phase gates also
allow the discussion of the σ̂z ⊗ σ̂z interaction in a familiar
frame, while for the quantum Ising Hamiltonian a canonical
transformation is introduced, which leads to a more involved
dressed-state picture (see section 3.5).

The interaction according to the Hamiltonian can be
implemented [47, 110, 123] by stimulated-Raman transitions
driven by two beams with wavevectors �k1, �k2 and difference
frequency close to a (several) motional mode(s) (see
figure 5(b)). On average the differential ac Stark shift between
the levels |↓〉 and |↑〉 caused by the two beams can be
compensated by choosing appropriate polarizations of the
beams. Still, on short timescales ∼ 2π/δm the ions experience
a state-dependent force that leads to the above displacement in
the phase spaces of the corresponding modes.

In the original implementation of the geometric phase
gate [110] two 9Be+ ions are used. The state-dependent forces

amount to �F↓ = −2 �F↑. This means that the operators (α01̂1
(i)

+
α3σ̂

(i)
z ) have diagonal elements 1 and −2, which is fulfilled

for α0 = −1/2 and α3 = 3/2. The effective wavevectors
�k(1)

I = �k(2)
I = �k1 − �k2 point along the axis of the linear trap

and the laser beams are detuned by δSTR = 2π × 26 kHz
from the stretch (STR) mode. The effect of the centre-of-
mass (COM) mode can be neglected (δCOM ≈ 100δSTR). The
ions are placed at the same phase of the stimulated-Raman
interaction (ϕ(1)

I = ϕ
(2)
I = 0).

For t = Tg = 2π/δSTR the time evolution operator
equation (3.33) simplifies to

Û
′(LDR)(RWA)
I (Tg, 0) ≈ exp

(
− 2π i

2∑
i=1

2∑
j=1

(−1)i−j�2
I η

2
STR

δ2
STR

× [α2
3 σ̂

(i)
z ⊗ σ̂ (j)

z + α0α3
(
σ̂ (i)

z + σ̂ (j)
z

)] )
, (3.34)

where we have used ηSTR := η
(1)
STR = −η

(2)
STR and neglected

the global phase arising from the 1̂1
(i) ⊗ 1̂1

(j)
terms. The

sequence of the gate is similar to the one in figure 7, but
without the second displacement pulse D̂2. Ideally, the initial
state |ψ〉 = |↓↓〉|nCOM = 0, nSTR = 0〉 is rotated to
1/2(|↓↓〉 + |↓↑〉 + |↑↓〉 + |↑↑〉)|nCOM = 0, nSTR = 0〉 by
the first R̂(π/2, π/2) pulse (the phase ϕ of the first pulse can
be chosen arbitrarily). The only non-vanishing contributions
arise from the σ̂z ⊗ σ̂z terms for the |↓↑〉 and |↑↓〉 states, which
gain a geometric phase

�STR↓↑/↑↓ = −2π × 4
�2

I η
2
STR

δ2
STR

α2
3 . (3.35)

Figure 6. Comparison between parameters of geometric phase
gates [110] with two ions using the axial motional modes and radial
motional modes. (a) The parameters correspond to the gate
from [123]. The axial centre-of-mass (COM) and stretch (STR)
mode have a large frequency difference (2π × 1.6 MHz). The
detuning of the Raman beams from the STR mode amounts to
δSTR = −2π × 266 MHz. That is why the main contribution to the
differential geometric phase between |↓↓〉/|↑↑〉 and |↓↑〉/|↑↓〉 is
due to a (single) loop in the phase space of the STR mode. However,
as already suggested in [110], the detuning from the COM mode is
chosen to be an integer multiple of the detuning from the STR mode
(δCOM = −5 × δSTR). Hence, there is no entanglement left between
the electronic and motional modes at the gate duration
Tg = |2π/δSTR| = 3.75 µs. (Note that the spin-echo sequence is not
included in Tg.) (b) The parameters correspond to a phase gate on
two of the radial motional modes. The radial centre-of-mass (COM)
and rocking (ROC) mode have a comparatively small frequency
difference of only 2π × 130 kHz. The detunings from both modes
are chosen to have the same absolute values resulting in
(approximately) equal contributions to the acquired geometric phase
from both modes. The gate duration according to the original
implementation would amount to Tg = |2π/δSTR| = 15.4 µs. As the
displacement pulse is repeated in the second gap of the spin-echo
sequence (compare figure 7) to cancel dynamic phases
(compare [118] and see text), the duration increases by an additional
factor of two.

By choosing appropriate beam intensities and thus �I, these
phases equal �STR↓↑/↑↓ = −π/2. The subsequent R̂(π, π/2)

and R̂(π/2, π/2) pulses lead to the final Bell state |ψ̃〉 =
1/

√
2(|↓↓〉 + i|↑↑〉), which is achieved experimentally with

a fidelity of F = 97% [110].
A similar implementation of the geometric phase gate

is reported in [123] based on two 25Mg+ ions. The state-
dependent forces amount to �F↓ = −3/2 �F↑ (α0 = −1/4 and
α3 = 5/4). Furthermore, the detuning from the STR mode
amounts to δSTR = −2π × 266 kHz and simultaneously the
detuning from the COM mode δCOM = −2π × 1330 kHz
(compare figure 6(a)). Hence, the effect of the COM mode
is also exploited for the gate. As the detuning from the COM
mode is chosen to be an integer multiple of the detuning from
the STR mode (δCOM = −5δSTR), the first exponential in
equation (3.33) still becomes unity for the gate duration of
Tg = |2π/δSTR|. (In other words, all circular trajectories in
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all phase spaces return to their initial position for Tg.) As a
result, there is no entanglement left between the electronic and
motional states.

Analogous to equation (3.35), but considering δSTR < 0
and δCOM > 0 for the detunings and η

(1)
COM = η

(2)
COM for the

Lamb-Dicke parameters of the COM mode, the geometric
phases yield

�STR↓↑/↑↓ = 2π × 4
�2

I η
2
STR

δ2
STR

α2
3, (3.36)

�COM↓↓/↑↑ = −2π

∣∣∣∣δCOM

δSTR

∣∣∣∣× 4
�2

I η
2
COM

δ2
COM

α2
3 . (3.37)

By adjusting the beam intensities appropriately the differential
phase between |↓↓〉/|↑↑〉 and |↓↑〉/|↑↓〉 can be adjusted to
fulfil �STR↓↑/↑↓ − �COM↓↓/↑↑ = π/2. As �STR↓↑/↑↓ has the
opposite sign compared with �COM↓↓/↑↑, the geometric phase
gate makes use of two motional modes simultaneously.

However, some of the dynamic phases from the COM
mode do not vanish:

�̃COM↓↓/↑↑ = ±2π

∣∣∣∣δCOM

δSTR

∣∣∣∣× 8
�2

I η
2
COM

δ2
COM

α0α3. (3.38)

These phases have an absolute value of 2α0/α3 of the geometric
phase from the COM mode and lead to a small deviation from
the ideal state at the end of the gate.

Compared with the original implementation in [110],
the gate is speeded up by approximately a factor of 10 and the
fidelity F for the Bell state exceeds 95%. (Note that the
duration of the spin-echo sequence is not included in Tg,
because its rotations could be much faster and empty gaps
can in principle be removed.)

The radial motional modes are interesting, because they
are similar to the normal modes in systems of individual
traps for each ion (compare section 6), which are promising
candidates for scalable systems in quantum simulations. To
investigate the differences between the axial and radial modes
of motion the geometric phase gate with 25Mg+ is performed on
a pair of radial modes (see also [122] for a Mølmer–Sørensen
gate performed on the radial modes).

The detunings from the COM and ROC mode
(abbreviation for ‘rocking’ mode, the equivalent to the STR
mode in terms of the axial motional modes) are chosen to have
the same absolute values δCOM = −δROC = 2π × 65 kHz (see
figure 6). The geometric phases acquired on each motional
mode are basically the same as in equation (3.36), where ‘STR’
has to be replaced by ‘ROC’, and equation (3.37). (However,
the signs change due to a change of the signs of the detunings.)
The contributions to the total differential geometric phase
between |↓↓〉/|↑↑〉 and |↓↑〉/|↑↓〉 due to the COM and ROC
mode are (approximately) equal now. However, the dynamic
phase (analogous to equation (3.38)) arising from the COM
mode can no longer be neglected.

The pulse scheme of the geometric phase gate is
modified by adding a second displacement pulse in the second
gap of the spin-echo sequence (see figure 7 and compare
[118]). The intensities of the beams are now adjusted for
differential geometric phases due to each displacement pulse of

Figure 7. Pulse scheme of the geometric phase gate. It consists of a
spin-echo sequence (R̂(π/2, π/2), R̂(π, π/2), R̂(π/2, π/2) pulses)
with a displacement pulse (labelled ‘D̂1’) in the first gap of the
spin-echo sequence for the original implementation of the phase
gate [110]. For the gate on the radial modes of motion a second
displacement pulse (labelled ‘D̂2’) is introduced to cancel dynamic
phases from D̂1 due to different absolute values of the forces on |↑〉
and |↓〉 (compare [118]). For all gates the duration of each
displacement pulse is chosen to be TD = |2π/δSTR/ROC| such that
each displacement pulse leads to a closed loop in each phase space.
Hence, the total gate duration amounts to Tg = TD for the original
implementation and Tg = 2TD for the gate on the radial modes of
motion. (Note that the spin-echo sequence is not included in Tg.)
The dashed R̂(π/2, π/2 + ϕ) analysis pulse is added for the
measurement of the gate fidelity (see figure 9).

Figure 8. Total fluorescence from the two ions as a function of the
total displacement duration 2TD (compare figure 7). The detected
fluorescence signal from both ions amounts to approximately
7 counts/20 µs for state |↓↓〉 and close to zero for |↑↑〉. The
duration between the displacement pulses is chosen to be
Tw = |2π/δCOM/ROC| in the experiment (compare figure 7). At
Tg ≈ 30.8 µs the state |ψ〉 ≈ (|↑↑〉 + i|↓↓〉)|nCOM = 0, nROC = 0〉
is prepared. Each data point represents the average of 400
measurements (squares and triangles) and 200 measurements
(circles), respectively. The statistical errors are on the order of the
size of the symbols. The curve is based on a fit of the time evolution
of equation (3.33) with an additional empirical exponential decay to
mimic decoherence effects. The only fit parameters are the
fluorescence for |↓↓〉 amounting to 7.2 counts/20 µs and the decay
constant τ ≈ 290 µs. The gate serves as an experimental reference
for the isolated interaction strength and is not optimized to provide
the highest gate fidelity.

�COM↓↓/↑↑ − �ROC↓↑/↑↓ = π/4. While the geometric phases
of both displacement pulses add up to π/2, the dynamic phases
cancel each other, as the π pulse of the spin-echo sequence
interchanges |↓↓〉 ↔ |↑↑〉 (and |↓↑〉 ↔ |↑↓〉). Additionally,
the more symmetric pulse scheme enhances the robustness
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Figure 9. Parity measurement after the geometric phase gate on two
radial modes of motion with two ions. The parity is defined as
P := P↓↓ + P↑↑ − (P↑↓ + P↓↑), where Ps,s′ denotes the population
of the electronic state |s, s ′〉 with s, s ′ ∈ {↓, ↑}. It is measured as a
function of the phase ϕ of the analysis pulse R̂(π/2, π/2 + ϕ)
(compare figure 7). Each data point represents the mean of 2500
measurements. The contrast C = 92.2% is determined from the
fitted curve. Considering the populations P↓↓ + P↑↑ > 98% for the
entangled state we obtain a Bell state fidelity F > 95%.

of the gate against uncompensated differential ac Stark shifts
between |↓〉 and |↑〉.

The total fluorescence from the two ions as a function of
the total duration of the displacements 2TD is shown in figure 8.
The gate duration due to the smaller detunings and the second
displacement pulse is more than a factor of eight longer than for
the gate in [123]. Still, the fidelity exceeds 95% (see figure 9).

3.5. Quantum Ising Hamiltonian

Above we have introduced σ̂z ⊗ σ̂z interactions that are used
in quantum gates. In the following we will present a slightly
different approach, in which Ising spin–spin interactions are
continuously induced by means of optical forces.

The spin–spin interaction as proposed in [21] and
experimentally realized in the simulation of a quantum Ising
Hamiltonian in [47] is identical to the interaction ĤI described
in section 3.3. (Note that a similar proposal involving the
same mathematics is given in [23].) However, the quantum
Ising Hamiltonian contains an additional (simulated) magnetic
field pointing in the x-direction. We will adapt our notation
in this section and split the total interaction Hamiltonian into
the following terms: ĤS denotes the term that generates the
spin–spin interaction and ĤM denotes the term leading to the
simulated magnetic field. The index ‘I’ of the frequencies
�I and ωI, etc is changed to ‘S’ or ‘M’ accordingly in the
respective terms. The complete interaction is described by the
Hamiltonian ĤI = ĤS + ĤM. In the following, we will first
derive the spin–spin interaction Hamiltonian from ĤS focusing
on an Ising interaction (σ̂z ⊗ σ̂z only). Afterwards, we will
discuss the magnetic field term ĤM and its effect.

The derivation of the quantum Ising Hamiltonian [21, 124]
involves a slightly different interaction picture compared with

section 3.1 by substituting Ĥ0 with Ĥ∅:

Ĥ0 = Ĥe + Ĥm

= Ĥe +
3N∑

m=1

h̄ωSâ
†
mâm︸ ︷︷ ︸

=:Ĥ∅

−
3N∑

m=1

h̄δmâ†
mâm︸ ︷︷ ︸

=:Ĥδ

. (3.39)

The term Ĥδ is added to the interaction Hamiltonian.
To retrieve the representation of ĤS in the newly defined

interaction picture,

Ĥ′
S := Û

†
∅ĤSÛ∅ with Û∅ := e−iĤ∅t/h̄, (3.40)

we adapt the calculations from sections 3.1 and 3.3 accord-
ingly: the frequencies in the transformation equation (3.14)
are changed to ωm → ωS. As a result, the substitution
e±iωmt → e±iωSt has to be applied to equation (3.15) (and sub-
sequent equations) and e±iδmt → 1 to equation (3.32). Hence,
ĤS reads in the new interaction picture (including the expan-
sion to first order in the Lamb–Dicke parameters and the RWA):

Ĥ′(LDR)(RWA)
S =

N∑
i=1

3N∑
m=1

ih̄�
(i)
S η(i)

m eiϕ(i)
S â†

m

×
(
α01̂1

(i)
+ α3σ̂

(i)
z

)
+ h.c. (3.41)

However, the full Hamiltonian in the interaction picture now
also involves

Ĥ′
δ = Û

†
∅ĤδÛ∅ = Ĥδ, (3.42)

where the transformation is the identity, because trivially
[Ĥ∅, Ĥδ] = 0.

To gain the form of a spin–spin interaction, we apply a
canonical transformation (compare [21]) to the Hamiltonian.
We want to note that an adiabatic elimination of phonons would
yield the same effective description of the system; however, the
canonical transformation provides a systematic method to also
calculate the corrections to the ideal quantum Ising model:

Ĥ′′(LDR)(RWA)
S + Ĥ′′

δ := Ûc

(
Ĥ′(LDR)(RWA)

S + Ĥδ

)
Û †

c (3.43)

with

Ûc := exp

(
−

N∑
i=1

3N∑
m=1

1

h̄δm

[
ξ̂ (i)
m â†

m − ξ̂ (i)†
m âm

])
(3.44)

and

ξ̂ (i)
m := ih̄�

(i)
S η(i)

m eiϕ(i)
S

(
α01̂1

(i)
+ α3σ̂

(i)
z

)
. (3.45)

Using the calculations from appendix G, the transformed
Hamiltonian reads

Ĥ′′(LDR)(RWA)
S + Ĥ′′

δ =
N∑

i=1

N∑
j=1

3N∑
m=1

1

h̄δm

ξ̂ (i)
m ⊗ ξ̂ (j)†

m + Ĥδ

= h̄

N∑
i=1

N∑
j=1

3N∑
m=1

�
(i)
S �

(j)

S η(i)
m η

(j)
m

δm

e
i
(
ϕ

(i)
S −ϕ

(j)

S

)

×
(
α01̂1

(i)
+ α3σ̂

(i)
z

)
⊗
(
α01̂1

(j)
+ α3σ̂

(j)
z

)
+ Ĥδ. (3.46)
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The Hamiltonian can be expanded into a pure σ̂z ⊗ σ̂z

interaction, a ‘bias’ term with σ̂z interaction, and a constant
term that can be neglected. The ‘bias’ term acts as a
longitudinal magnetic field and leads to a deviation from the
quantum Ising model. At first glance, this is not desired
and it will be treated as an error in the following discussion.
However, by including a ‘bias’ term in a controlled way
we could also explore an extended phase diagram with the
longitudinal field as an additional parameter.

We want to stress the similarity between the spin–
spin interaction according to equation (3.46) and the σ̂z ⊗
σ̂z interaction discussed in section 3.3. The canonical
transformation has the form of a displacement operator
and looks very similar to the first exponential function in
equation (3.33) (except for the time dependence of the latter).
The similarity to the geometric phase term in equation (3.33)
can be best seen comparing the time evolution operators. As
the Hamiltonian in equation (3.46) is time-independent, the
time evolution simply reads

Û
′′(LDR)(RWA)
S (t, t0) × Ûδ(t, t0)

= exp

(
−i

N∑
i=1

N∑
j=1

3N∑
m=1

�
(i)
S �

(j)

S η(i)
m η

(j)
m

δ2
m

(
α01̂1

(i)
+ α3σ̂

(i)
z

)

⊗
(
α01̂1

(j)
+ α3σ̂

(j)
z

)
× δm(t − t0)e

i
(
ϕ

(i)
S −ϕ

(j)

S

))

× exp

(
i

3N∑
m=1

δm(t − t0)â
†
mâm

)
. (3.47)

Before we can apply the easier time evolution of
equation (3.47), in which electronic states are decoupled from
motional states, the state vector |ψ〉 has to be transformed
from the original picture to |ψ〉′′ := Ûc|ψ〉. As Ûc depends
on the electronic state, the transformation will in general lead
to an entangled state and the canonical transformation can be
interpreted as dressed-state picture (electronic states ‘dressed’
with motional states). As the states for the simulation of
the quantum Ising Hamiltonian are prepared in the original
(undressed) picture, but the Hamiltonian acts in the dressed
picture, an error is introduced into the simulation (see, for
example, [125]). However, as long as the effect due to Ûc is
small (|�(i)

S η(i)
m αl/δm| � 1), we can use the approximation

|ψ〉′′ ≈ |ψ〉. In terms of the geometric phase gate this
corresponds to the case when the circles in phase space are
small and the entanglement between electronic and motional
states can be neglected at any time.

The same holds for the measurements of observables: they
are performed in the original (undressed) picture, in which
electronic states are entangled with the motional states, and
in general a further error is introduced in the simulation.
However, the measurement of the states is typically insensitive
to the motional states and involves a projection to one of the
electronic states, for example, the |↓〉 state: P̂ (i) := |↓〉(i)〈↓|(i).
As [Ûc, P̂

(i)] = 0, the projector does not change under the
canonical transformation and the readout of σ̂z eigenstates
(without any rotations of the bases applied beforehand) does
not introduce further errors.

The form of the ‘bias’ term proportional to σ̂z can be
simplified in the case of a linear Paul trap with equal Rabi
frequencies �

(i)
S and equal phases ϕ

(i)
S for all ions: The sum

over j extends over the Lamb-Dicke parameters η
(j)
m only. This

sum is non-zero only for centre-of-mass modes, for which the
η

(j)
m are additionally independent of the site j . Hence, the three

sums simplify to a sum over σ̂ (i)
z with constant prefactor [21]:

2�2
Sh̄Nα0α3


 ∑

m∈{c.m.}

η2
m

δm


 N∑

i=1

σ̂ (i)
z . (3.48)

However, this simplification does not necessarily hold for two-
dimensional arrays of individual traps for each ion.

In the following, we will discuss the magnetic field
term, which originates from a σ̂x interaction described by
equation (3.17) (with α1 = 1 and α2 = 0). In principle,
we have to apply the substitution e±iωmt → e±iωSt due to
the new interaction picture here, too. However, we consider
a magnetic field term without motional dependence in the
following (η(i)

m = 0, compare section 3.2) and thus the terms
containing the motional creation/annihilation operators vanish:

Ĥ′(RWA)
M =

N∑
i=1

h̄

2
�

(i)
M e

i
(
−(ωM−ω↑↓)t+ϕ

(i)
M

)
σ̂ (i)

+ + h.c. (3.49)

The canonical transformation can be rewritten as

Ûc = exp

(
i

N∑
i=1

ĥ(i)
(
α01̂1

(i)
+ α3σ̂

(i)
z

))
(3.50)

with the Hermitian operator

ĥ(i) :=
3N∑

m=1

[
ζ (i)
m â†

m + ζ (i)†
m âm

]
(3.51)

and

ζ (i)
m := − h̄�

(i)
S η(i)

m eiϕ(i)
S

h̄δm

. (3.52)

Trivially, the commutator [ĥ(i), σ̂
(i)
+ ] = 0. The canonical

transformation of Ĥ′(RWA)
M (see equation (3.49)) is thus

equivalent to a transformation of the σ̂
(i)
± operator as in

equations (B.16) and (B.17):

Ĥ′′(RWA)
M = ÛcĤ′(RWA)

M Û †
c

=
N∑

i=1

h̄

2
�

(i)
M e

i
(
−(ωM−ω↑↓)t+ϕ

(i)
M

)
e2iα3ĥ

(i)

σ̂ (i)
+ + h.c. (3.53)

The expansion to first order in ζ (i)
m (and thus to first order in

η̂(i)
m ) yields

Ĥ′′(RWA)
M ≈

N∑
i=1

h̄

2
�

(i)
M e

i
(
−(ωM−ω↑↓)t+ϕ

(i)
M

)

×
(

1 + 2iα3

3N∑
m=1

[
ζ (i)
m â†

m + ζ (i)†
m âm

])
σ̂ (i)

+ + h.c.

=: Ĥ′(RWA)
M + Ĥ′′

E. (3.54)
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The magnetic field term after the canonical transformation
deviates to order �

(i)
S η(i)

m α3/δm due to Ĥ′′
E from the pure σ̂x

interaction Ĥ′(RWA)
M . This introduces an additional error in the

simulation. If the condition |�(i)
S η(i)

m αl/δm| � 1 is met, it can
be small or even negligible and we, effectively, will obtain the
desired magnetic field term.

To summarize, the complete Hamiltonian is obtained by
adding equation (3.46) and equation (3.54). It consists of
a spin–spin interaction term and a simulated magnetic field
pointing in the x-direction, which add up to the ideal quantum
Ising Hamiltonian. Assuming a resonant interaction for the
simulated magnetic field (ωM − ω↑↓ = 0) and neglecting
the phases (ϕ(i)

S = ϕ
(i)
M = 0), the quantum Ising part can be

written as

ĤQIsing := ĤB + ĤJ

=
N∑

i=1

B(i)
x σ̂ (i)

x +
N∑

i=1

N∑
j=1
j �=i

J (i,j)σ̂ (i)
z ⊗ σ̂ (j)

z , (3.55)

where

B(i)
x := h̄�

(i)
M and J (i,j) := h̄

3N∑
m=1

�
(i)
S �

(j)

S η(i)
m η

(j)
m

δm

α2
3 .

(3.56)

(Note that the superscripts of B(i)
x and J (i,j) indicating the site

will be omitted in the following sections, if the interaction
strengths for all ions are equal.)

Depending on the sign of the detunings δm, the effective
spin–spin interaction can be of ferromagnetic (J (i,j) < 0)
or antiferromagnetic (J (i,j) > 0) nature. The range and
spatial structure of the spin–spin interactions can be partially
controlled by choosing the absolute values of the detunings δm.
There are two different limits in which the interaction can be
shaped in a very controlled way. On the one hand, if the laser
is tuned close to the frequency of a given mode m′ (|δm �=m′ | �
|δm′ | ∀ m), then J (i,j) is a long-range interaction, whose
spatial dependence is governed by the phonon wavefunction
corresponding to m′, as can be seen directly in equation (3.56).
On the other hand, if all the motional modes contribute to the
spin–spin coupling (|δm−δm′ | � |δm′ | ∀m, m′), the interaction
shows a power-law decay J (i,j) ∝ 1/|i − j |3 [21, 124]. This
can be understood by the partial interference between the
contributions from each mode’s wavefunction.

Furthermore, the freedom in the choice of the coupling
strengths �

(i)
S for the individual ions as well as the trapping

geometry and laser direction going into η(i)
m allows us to shape

the individual coupling strengths J (i,j). This opens up the
possibility of simulating a rich variety of models beyond the
quantum Ising Hamiltonian, such as spin-frustrated systems
[48] (see section 5.1). An illustration of the normal modes of
motion and an example of the effective spin–spin couplings in a
surface-electrode trap similar to the traps discussed in section 6
is given in figure 10.

In addition to the quantum Ising part discussed above
the complete Hamiltonian consists of the following terms that

Figure 10. Example for normal modes in a surface-electrode trap
geometry similar to the one discussed in section 6. It consists of
three trapping zones (red spheres) arranged in a triangle at mutual
distances of 40 µm. Each trapping zone has a (bare) frequency of
2π × 2 MHz corresponding to the vibration towards the centre of
the triangle, 2π × 1.1 MHz for the out-of-plane vibration and
2π × 0.9 MHz for the third, perpendicular direction. The
eigenvectors (green arrows) of the nine normal modes for an ion of
mass m = 25 amu in each potential minimum are shown (first and
last row: top view for in-plane modes; middle row: side view for
out-of-plane modes; see appendix A for details of the calculation).
The labels denote the frequencies corresponding to the modes. The
(coupled) frequencies make up three triplets close to each bare
frequency; two frequencies in each triplet are degenerate. For
k̂

(i)
I = k̂I pointing in the direction corresponding to the (bare)

2π × 2 MHz vibration of one of the trapping zones,
ωI ≈ 2π × 1.725 MHz, and equal �

(i)
I = �I we can obtain effective

spin–spin couplings J (1,2) = J (1,3) = −J (2,3) ∼ 2π × 1 kHz, which
would allow for the evolution to a frustrated spin state. We want to
note that the out-of-plane modes must be tilted in an implementation
to allow for three-dimensional Doppler cooling. This can, for
example, be achieved by applying dc voltages to appropriate
electrodes (compare section 6). These dc fields could also be used to
achieve/raise the degeneracy of the bare frequencies in the
individual potential minima and, hence, switch on/off motional
couplings between the ions.

lead to a deviation from the ideal model (constant terms are
omitted):

ĤError = 2
N∑

i=1

N∑
j=1

α0

α3
J (i,j)σ̂ (i)

z + Ĥδ + Ĥ′′
E. (3.57)

The first ‘bias’ term is further discussed in the context of the
experimental realization, see [47] and section 5.1. The second
term Ĥδ can be interpreted as an energy offset, which cancels
by applying an appropriate redefinition of the energy scale.
As mentioned above, the last term leads to only a small or
even negligible error for |�(i)

S η(i)
m αl/δm| � 1. For a more

detailed discussion of the errors in the simulation of quantum
spin Hamiltonians we refer the reader to [125].
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We want to emphasize that [ĤB, ĤJ] �= 0, such that the
time evolution of the total quantum Ising Hamiltonian ĤQIsing

cannot be simply described by the time evolutions of ĤB and
ĤJ separately.

4. Operations interpreted for experimental quantum
simulations

To realize a QS for a quantum spin Hamiltonian, we have
to (1) simulate the spin, provide (2) its initialization and (3)
the interaction of this ‘spin’ with a simulated magnetic field,
(4) realize an interaction between several spins (spin–spin
interaction) and (5) allow for efficient detection of the final
spin state. Additional diversity for QS arises by the capability
of precise initialization, control and readout of the motional
states.

The mathematical derivation and description of the
individual operations have been described in section 3. In
this section, we explain in a simplified pictorial way the
related generic building blocks in terms of an adiabatic QS
of a quantum spin Hamiltonian within a linear chain of ions.
No specific ion species or trapping concept are required. A
well-suited system to illustrate the generic requirements and
to investigate the feasibility of QS in ion traps is given by the
quantum Ising Hamiltonian (see equation (3.55)). We want to
note that the building blocks already suffice to implement a
whole family of quantum spin Hamiltonians.

However, the toolbox for QS is substantially larger (see
also section 5.2). (1) Phonons do not have to be restricted to
mediate interactions in QC and QS: they were also proposed
to simulate bosons, for example atoms in the Bose–Hubbard
model [22] or charged particles [126]. (2) Topological defects
in the zigzag structure of two-dimensional Coulomb crystals
(see figure 13) are proposed to simulate solitons [127].

4.1. Simulating the spin

The mutual distance between the ions/spins in linear RF traps
is typically of the order of several micrometres (see figure 3).
Therefore, the direct interaction between their electronic states
remains negligible, which is advantageous, because the related
interaction strength could hardly be tuned or even switched off.
Therefore, the spin-1/2 states are implemented like qubit states
(see section 2.2).

4.2. Simulating the magnetic field

Implementing an artificial spin allows us to shape artificial
fields to implement a precisely controllable interaction and
related dynamics between the ‘spin’ and the ‘field’. To
simulate an effective magnetic field, the two electronic states
|↓〉 and |↑〉 are coupled via electro-magnetic radiation (see
section 2.3, operation (a)). The related coherent oscillation of
the state population between the two levels can be described in
terms of Rabi flopping. In the Bloch sphere picture, the tip of
the electronic state vector rotates during one flop continuously
from state |↓〉 to |↑〉 and vice versa. For continuous coupling

this can be interpreted as the precession of a spin exposed to a
perpendicular magnetic field.

The rotation matrix in equation (3.30) exactly describes
this interaction with a single spin (see also sections 3.2 and
3.4). For example, if we start with |↓〉 and apply a pulsed
rotation R̂(π/2, π/2), we will obtain an eigenstate of σ̂x , which
is abbreviated by |→〉 := 1/

√
2(|↓〉 + |↑〉). In the Bloch

picture, this corresponds to a 90◦ rotation of the Bloch vector
around the y-axis, such that it will point in the direction of the
x-axis. Continuing with a second identical rotation we just flip
the spin to |↑〉 as if we applied R̂(π, π/2) or a 180◦ rotation
around the y-axis, respectively. However, we can replace
the second operation by R̂(π/2, 0), which corresponds to a
rotation around the x-axis. As the state |→〉 is an eigenstate
of σx it will not be affected.

Stroboscopic rotations have been introduced in section 3.4
to implement single-qubit gates for a QC. Continuous versions
of these single-qubit operations can be interpreted in the
context of analogue QS as simulated magnetic field (first term
of equation (3.55)).

4.3. Simulating the spin–spin interaction

Let us first discuss the implementation of a basic spin–spin
interaction close to the original proposal in [21]: two ions are
confined in a linear RF trap and a standing wave provides state-
dependent dipole forces. The ions are located at the same
phases (ϕ(i) = 0), such that ions in different spin states are
pulled/pushed in opposite directions.

If both ions are in the same spin state, they will be
pulled in the same direction. Hence, their mutual distance
and mutual Coulomb energy, respectively, remain unchanged.
However, if the two spins are in different states, one ion
will be pulled and the other one pushed. Their mutual
distance and as a result their mutual Coulomb energy will
change. This is exactly the essence of a spin–spin interaction,
where the energy corresponding to a spin state depends
on the states of its neighbours. To interpret interactions
as ferromagnetic or antiferromagnetic it is advantageous to
consider the mutual Coulomb energy in longer chains of spins
(see figure 11).

The technical realization in [47] avoids the difficulties
arising from standing waves and resonantly enhances
the interaction strengths by implementing the spin–spin
interactions with stimulated-Raman transitions as in the case
of quantum gates [124] (see section 3.4). In a pictorial
interpretation, the standing waves are replaced by ‘walking’
waves and instead of static displacements we obtain driven
oscillations of the ions. However, the mathematical description
yields exactly the same spin model in an appropriately chosen
frame (see section 3.5). The sign of J can additionally be
changed by choosing a different sign for the detunings δm from
the modes (see equation (3.56)).

4.4. Geometric phase gate versus adiabatic quantum
simulations

It might be helpful to emphasize the differences and similarities
of the interactions in QC and analogue QS: to realize a
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Figure 11. Ion chains superimposed by standing waves providing
state-dependent forces in the (a) axial direction and (b) radial
direction. All ions are placed at the same phases of the standing
waves. (a) If all spins are in the same state, the ions will all be
shifted in the same direction without changing their mutual
Coulomb energy. However, if every second spin is in the opposite
spin state, distances between neighbouring ions will be alternately
increased and decreased and the mutual Coulomb energy is
increased due to its 1/d dependence. Here d denotes the distance
between neighbouring spins. The ferromagnetic order is
energetically preferred, such that J < 0 for this interaction. (b) A
chain of ions with the same spin states will again only be displaced
and the mutual Coulomb energy will not change. For alternating
spin states the distances between neighbouring ions will increase,
such that the mutual Coulomb energy will be decreased. (Note that
this should not to be confused with the structural zigzag
phase-transition (see figure 3), where the radial displacements are
typically orders of magnitude larger and spin-independent.) The
antiferromagnetic order is energetically preferred, such that J > 0.

phase gate operation on the radial modes of two qubits,
as described in section 3.4, typically one or two isolated
modes of motion are selected. The small detuning from the
modes is chosen to obtain comparatively large interaction
strengths and thus motional excitations. For ions being
initialized in the motional ground state the displacements in the
respective phase space(s) lead to an average phonon number
n̄ ∼ 1 at the point of maximal motional excitation and to
a significant entanglement between electronic and motional
states. However, this entanglement vanishes at the end of the
gate and there will be an (maximal) entanglement between the
qubit states only (see section 3.4).

In contrast, we consider an adiabatic evolution according
to the quantum Ising Hamiltonian in the case of analogue
QS (see section 5.1 for the experimental protocol). We have
to make sure that the entanglement between electronic and
motional states remains small at any time during the simulation
(see discussion of errors in section 3.5). Additionally, running
the simulation on many spins simultaneously will result in
contributions from many motional modes simultaneously.
As a result, a large detuning from all modes has to be

chosen, such that the difference of the radial frequencies
can be neglected and a net effect from all modes remains.
Choosing the right parameters allows the simulation of spin–
spin interactions of different strength, different signs and even
range of interaction [21].

Furthermore, a scan of the duration of the displacement
pulses TD in geometric phase gates leads to a periodic evolution
from |↓↓〉 to |↑↑〉 and vice versa (see figure 8).

In contrast, the distinct contributions (ĤB and ĤJ) of the
quantum Ising Hamiltonian are not stroboscopically alternated
but applied simultaneously. As mentioned in section 3.5, the
time evolution according to the quantum Ising Hamiltonian
is not simply the time evolution according to ĤB and
ĤJ separately. As a consequence, applying the spin–spin
interaction for a longer duration and/or increasing its strength
does not alter the state anymore.

5. Towards simulating many-body physics

In the first part of this section we want to assemble the building
blocks described above to illustrate how an analogue QS of
a quantum spin Hamiltonian can be implemented. For this
purpose, we will describe the realization of first proof-of-
principle experiments on the quantum Ising Hamiltonian (see
equation (3.55)). In the second part we aim to summarize, to
the best of our knowledge, the existing proposals addressing
many-body physics with the described and available toolbox.

5.1. Proof-of-principle experiments on quantum spin
Hamiltonians

First, we will describe the basic implementation of the
experimental protocol on the axial modes for the case of two
spins [47], as illustrated in figure 12. Subsequently, we will
emphasize the differences and additional information explored
in [48, 49]. For the details on the individual experimental
parameters we refer to these references.

For the case of two spins, the protocol has been realized
following five steps. (1) The two ions are initialized by
Doppler cooling, sideband cooling and optical pumping (see
section 2.4) in the state |↓↓〉|nSTR = 0〉. (2) Both spins
are prepared by a common R̂(π/2, π/2) rotation in the σ̂ (i)

x

eigenstate |→→〉|nSTR = 0〉. (3) An effective magnetic
field of amplitude Bx is applied equivalent to a continuous
R̂(2�Mt, 0) rotation (see equations (3.55) and (3.56)). At
this step, the state |→→〉|nSTR = 0〉 represents the ground
state of the first term of the quantum Ising Hamiltonian in
equation (3.55) that can be ‘easily’ prepared. Note that
the rotation is slightly off-resonant to mimic an additional
σ̂z interaction counteracting the ‘bias’ field (see also [47]).
(4) The effective spin–spin interaction J is ramped up
adiabatically with respect to the timescale 1/�M defined by
the simulated magnetic field, until |J | � Bx . The system
adiabatically evolves into its new ground state, which is an
equal superposition of the two energetically preferred states
of the ferromagnetic order: 1/

√
2(|↓↓〉 + |↑↑〉). (5) Finally,

both interactions are switched off. The readout of the final
spin state is performed by state-dependent detection. This
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Figure 12. Probability of finding two spins in either of the states
|↓↓〉 or |↑↑〉 after an adiabatic QS of the quantum Ising
Hamiltonian as a function of |J/Bx |, starting within paramagnetic
order. The experimental protocol (top) consists of the interactions
applied simultaneously including an adiabatic increase in |J | to
transfer the system from the former ground state |→→〉 to the new
one (bottom). We achieve a maximal probability of
P↑↑ = P↓↓ = (49 ± 1)% to observe one of the states |↓↓〉 and |↑↑〉
corresponding to a ferromagnetic order and define the quantum
magnetization to be equal to P↑↑ + P↓↓ = (98 ± 2)%. We derive the
fidelity for the entangled state 1/

√
2(|↓↓〉 + |↑↑〉) to approximately

F = 0.88 by a parity measurement (compare [47] and section 3.4).

projects the spin state to one out of the four eigenstates of the
measurement basis (|↓↓〉, |↓↑〉, |↑↓〉, |↑↑〉). Steps (1)–(5) are
repeated many times to obtain the populations related to these
states.

To investigate the degree of entanglement of the final spin
state, an additional parity measurement is performed as in
the case of the geometric phase gates (see section 3.4). The
populations of |↓↓〉 and |↑↑〉 as a function of |J |/Bx and the
entanglement fidelity are summarized in figure 12.

The experimentally observed entanglement of the final
states confirms that the transition from paramagnetic to
ferromagnetic order is not caused by thermal fluctuations that
drive thermal phase transitions, but by the so-called quantum
fluctuations [45, 128] driving QPTs in the thermodynamic
limit at zero temperature. In this picture tunnelling processes
induced by Bx coherently couple the degenerate states |↑〉 and
|↓〉 with an amplitude ∝ Bx/|J |. For N spins the amplitude
for the tunnelling process between |�N↑〉 = |↑↑ . . . ↑〉 and
|�N↓〉 = |↓↓ . . . ↓〉 is proportional to (Bx/|J |)N , since all N

spins must be flipped. In the thermodynamic limit (N → ∞)
the system is predicted to undergo a QPT at |J | = Bx . At
values |J | > Bx the tunnelling between |�∞↑〉 and |�∞↓〉 is
completely suppressed. In our case of a finite system |�2↑〉
and |�2↓〉 remain coupled and the sharp QPT is smoothed into
a gradual change from paramagnetic to ferromagnetic order
(see figure 12).

It has to be noted that the performance of such a simulation
on a large number of spins in a one-dimensional chain requires
several technical improvements. Recently, a group at the

University of Maryland pioneered a substantial step for scaling
by investigating the emergence of magnetism in the quantum
Ising model using up to nine ions [49]. To achieve these
results they mediated the interactions via the radial modes
of motion [21, 122] (see also section 3.4). Furthermore, they
implemented the effective spin–spin interactions in a rotated
frame using Mølmer–Sørensen interactions [85, 87] on robust
hyperfine clock states. Thereby, they do not depend on the
phases ϕ(i) of the laser beams at the sites of the ions. To
perform an adiabatic transition, the simulated magnetic field
has been adiabatically turned off, while the effective spin–spin
interaction remains constant.

Their results allow much more than simply increasing the
number of spins: they enter a new regime of intriguing ques-
tions. The crossover of the quantum magnetization [47] from
paramagnetic to ferromagnetic order is sharpening as the num-
ber of ions is increased from two to nine, ‘prefacing the ex-
pected QPT in the thermodynamic limit’ [49]. Even though
the results can still be calculated on a classical computer, they
provide a possibility to critically benchmark QS aiming for
only slightly larger systems.

Increasing the number of ions to three and adapting
the individual spin–spin interactions including their signs
allows spin frustration to be addressed in the smallest possible
magnetic network [48]. Spin frustration of the ground state
can be pictorially understood in a two-dimensional triangular
spin lattice featuring antiferromagnetic spin–spin interactions.
Here, it becomes impossible for neighbouring ions to have
pairwise opposite states. Classically, two ions will adopt
different states, while the state of the third one is undetermined.
During an adiabatic evolution of the quantum mechanical
system (starting from the paramagnetic order) nature will
choose a superposition of all degenerate states, leading to
massive entanglement in a spin-frustrated system. In the
realization of the experiment, the three ions are still trapped in
a one-dimensional chain. However, almost complete control
over the amplitudes and signs of J (1,2), J (2,3), J (3,1) is gained
by coupling to particular collective modes of motion and
choosing appropriate detunings [48].

It has to be mentioned that for an increased number of spins
the energetic gap between ground and excited states further
shrinks and the requirement on adiabaticity enforces longer
simulation durations related to a longer exposure to decohering
disturbances. Still, as mentioned in section 1, the influence
of decoherence might destroy the entanglement within the
system, but this might not be relevant for the observable of
interest. Here it will be crucial to investigate the role of the
decoherence effects with respect to the specific analogue QS.

With respect to digital (stroboscopic) QS it should be
emphasized that no quantum error correction is required for
proof-of-principle experiments on a few ions. Promising
results of a stroboscopic version of the simulation of the
quantum Ising Hamiltonian with two spins have been shown
recently [129].
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5.2. Systems featuring many-body physics proposed for
analogue quantum simulations

Condensed matter met atomic, molecular and optical physics
not so long ago, when trapping techniques for ultracold neutral
atoms and ions allowed experimentalists to generate lattices
and crystals, where models from solid-state physics may
be implemented. Combining the fields has led to a very
rich interdisciplinary research activity, as well as to several
misunderstandings between scientists looking at the same
system from different points of view. In the particular case of
trapped ion experiments, the outlook for quantum simulation
of many-body models is very exciting, but some knowledge
on the details of this physical system is required to understand
both the limitations and the amazing possibilities of this setup.

In the following we review many-body models that have
the potential to be simulated with trapped ions. There have
been several contributions both from theory and experiments
to this research line. Most of them share the common feature
that they are inspired by known models from condensed matter
physics, but their implementation with trapped ions turns out
to lead to a rich variety of new physical phenomena, which
may even require new theoretical paradigms that go beyond the
conventional ones in the solid state. The three main reasons for
this are (1) trapped ion experiments are naturally performed in a
non-equilibrium regime, whereas solid-state physics typically
deals with thermal equilibrium, (2) trapped ion systems may in
principle be controlled and measured at the single particle level,
(3) ion crystals are typically mesoscopic systems, in the sense
that they may reach a number of particles (spins, phonons, etc)
large enough to show emergent many-body physics, but still
finite size effects are important. All those peculiarities have to
be kept in mind, since they provide us with unique features for
analogue QS.

5.2.1. Quantum spin models. Following the experimental
advances in QIP, the most natural degree of freedom to be
used for QS seems to be the electronic states for spins and
the phonons to mediate their mutual interactions. However,
one has to identify conditions where interesting phenomena
arise, such as, for example, quantum critical phases. This has
already lead to the promising proof-of-principle experiments
discussed above.

A unique feature that we can exploit with trapped ions
is the fact that the effective spin–spin interactions can be
implemented showing a dipolar decay, J (i,j) ∝ 1/|i − j |3.
In the case of the Ising interaction, the cubic dependence
does not change the critical universality class of the model,
as shown, for example, by the numerical calculations in [125].
However, even in this case, long-range entanglement is induced
by the long-range interaction, which is absent in conventional
nearest-neighbour quantum Ising chains. On the other hand,
when considering other interacting schemes, such as the
XXZ-Hamiltonian, the dipolar interaction may lead to the
formation of quasi-crystalline phases of spin excitations [130].
Furthermore, the simulation of the hexagonal Kitaev model
with ions in an optimized, two-dimensional surface-electrode
trap has been proposed [131].

Moreover, intrinsic properties of the trapped ion crystal,
such as the linear–zigzag transition, have been demonstrated
to be a QPT of the universality class of the Ising model in a
transverse field [132, 133].

Several pieces have been added to the toolbox of quantum
simulation, which definitely allow us to explore physics
beyond conventional solid-state paradigms. For example, a
theoretical proposal has been presented to implement models,
whose ground states show topological features [134]. Also,
methods to implement three-body spin–spin interactions have
been designed, see [135]. Finally, dissipation in trapped ion
systems has been proved to be useful to engineer quantum
phases that arise as steady-state of dissipative processes [136].
The many-body physics of dissipative systems is a much more
unexplored area than equilibrium properties, even for theorists.
For that reason, adding dissipation to quantum magnetism
opens an exciting perspective for trapped ions.

5.2.2. Interacting boson models. A variety of exciting
quantum many-body systems may also be simulated using the
collective motional degrees of freedom (phonons) to realize
models of interacting bosons. In particular, whenever the
motional coupling between ions is small compared with the
trapping frequency, the phonon number is conserved and
becomes a good quantum number to characterize the quantum
state of the system. This principle was introduced and
exploited in [22] to show that the physics of radial modes in
Coulomb chains is effectively described by a Bose–Hubbard
model. Vibrational couplings between two ions, say 1 and
2, induced by the Coulomb interaction, have a typical form
∝x̂(1)x̂(2), where x̂(i) is the ion displacement operator. Under
the approximation of phonon number conservation, those
terms become tunnelling couplings of the form (â

†
1 â2 + h.c.).

The same idea applies to quartic anharmonicities of the trap,
which yield Hubbard interactions, (â†

mâm)2. Anharmonicities
may be induced and controlled with optical forces, as shown
in [22]. This analogy between phonons and interacting bosons
opens an exciting avenue of research, where experiments might
be relevant even with a single ion, realizing a single anharmonic
quantum oscillator.

The ground state of those phonon-Hubbard models in
Coulomb chains was extensively studied in [137], where it was
shown that phonon Luttinger liquid phases may arise. Very
recent experiments indeed show the tunnelling of phonons
between ions trapped by different potentials, realizing thus
an important step towards the use of phonons for quantum
simulation [138, 139]. Exploiting phonon tight-binding
models has also been shown to allow the implementation of
models with disorder showing Anderson localization [140], as
well as synthetic gauge potentials using periodic driving of
the trap frequencies, see [126]. Using dipole forces acting on
ions confined in a microtrap array (see section 6), motional
couplings can be controlled such that phonons simulating
charged particles experience synthetic gauge fields.

5.2.3. Spin–boson models. The natural convergence of the
proposals presented above leads to the quantum simulation of
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spin–boson models. This is a paradigmatic model for quan-
tum impurities in solids, which typically describes a single
spin coupled to a continuous bath of harmonic oscillators with
a power-law spectral density. Surprisingly, the coupling of
the electronic levels of a single ion to the axial phonons of a
Coulomb chain yields a spin–boson model with a quasi-ohmic
spectral density [44]. The physics to be simulated here is equiv-
alent to some celebrated models in condensed matter physics,
such as the Kondo effect. The finite size effects that are in-
trinsic of trapped ion systems turn out to yield features beyond
the conventional physics of these models, in particular quan-
tum revivals associated with the reflection of vibrational waves
along the chain. Quite recently, it has been proposed to study a
situation in which spins and phonons are coupled, in such a way
that a Jaynes–Cummings–Hubbard model is simulated [141].
In this model phonons follow a tight-binding Hamiltonian and,
in addition, they are locally coupled to spins. The system has
been shown to undergo a superfluid–Mott insulator QPT.

5.2.4. Inhomogeneous many-body models: impurities and
topological defects. The tools for QS in ion traps are not
restricted to electronic and motional degrees of freedom only.
It has been proposed to exploit impurities in the Coulomb
crystal. On the one hand, for example, by embedding ion(s) of
a different species (different mass) into the crystal and taking
advantage of the altered spectrum of the modes and scattering
of phonons [142] and the option to include larger simulated
spins (S > 1/2) [143]. On the other hand, by creating localized
topological defects within the more dimensional structure of
the Coulomb crystal (see figure 13). In [127] it was suggested
to induce a structural phase transition from a linear chain of
ions (see figure 3(b)) to a zigzag structure (see figure 3(c)),
for example, by lowering the radial confinement. Changing
the parameters in a non-adiabatic way (fast compared with
the phonons mediating information within the crystal) should
cause independent domains of ‘zigzag’ and ‘zagzig’ structure,
respectively. At their clash, topological defects were predicted
and have recently been observed (see figure 13). The
number of the created defects should scale according to the
Kibble–Zurek prediction [144–146]. The defects themselves
can be interpreted as solitons [127]. Solitons are defined
as localized solutions of nonlinear systems, which depend
essentially on nonlinearity. Such solitons have a unique
spectrum of frequencies with modes which are localized to
the soliton and whose frequency is separated by a gap from
the other phonons. A quantum mechanical time evolution of
these modes was calculated numerically and it is expected
to remain coherent for hundreds of oscillations [147]. QS
could allow us to explore their potential applications for QIP
[127] as well as the quantum behaviour of these ‘objects’
themselves. Solitons appear in all branches of the natural
sciences and have been extensively investigated in solid-state
systems [148]. Among others, classical solitons were observed
in waveguide arrays [149, 150] and Bose–Einstein condensates
(BECs) [151], where they are mean field solutions. Discrete
solitons were investigated in the Frenkel–Kontorova (FK)
model [152, 153], which describes chains of coupled particles
interacting with a local nonlinear potential. In a different

Figure 13. Topological defects in two-dimensional Coulomb
crystals (compare figure 3(c) for a comparable crystal without
defects). Changing the experimental parameters non-adiabatically
during a structural phase transition from a linear chain of ions to a
zigzag structure, the order within the crystal breaks up in domains,
framed by topologically protected defects that are suited to simulate
solitons. (a) Numerical simulations for 33 ions predicting a
localized topological defect at the position of the marked (blue)
ions. (Courtesy of Benni Reznik and Haggai Landa.) (b) CCD
image of 45 laser cooled Mg+ ions providing clear evidence of the
topological defect indicated by the zigzag–zagzig transition. The
crystal contains a non-fluorescing molecular ion (MgH+) at the red
mark. (Courtesy of Günther Leschhorn and Steffen Kahra of the
group at MPQ.)

realization, a variant of the FK model can also be realized
in the ion trap by adding an optical lattice to a linear chain
[154–156].

The important requirement to address any of these
intriguing models will be to increase the number of ions and
the dimensionality of the system. Trapping ions in two-
dimensional arrays would allow the study of hard-core boson
phases, showing the effect of frustration, quantum spin liquid
phases and quantum states with chiral ordering [157]. Two
approaches for scaling will be described in more detail in the
following sections.

6. Scaling analogue quantum simulations in arrays
of radio-frequency surface-electrode traps

One possible way to overcome the limitations on scalability of
trapped ions in a common potential well (see section 2.1) is to
store them in an array of individual RF traps.

6.1. One-dimensional radio-frequency surface-electrode
traps

Conventional RF traps with their three-dimensional geometry
of electrodes (see figure 2) individually fabricated with
conventional machining were unique ‘masterpieces’ with
unique characteristics.

In 2005 and 2006, a group at NIST pioneered the
miniaturization of RF traps by projecting the electrodes onto a
surface [73, 74] (see figure 14(a)), very similar to chip traps for
neutral atoms [158]. Introducing photolithographic techniques
for the trap fabrication opened up exceptional precision and the
production of small series of identical traps, see for example
[159, 160]. Within these linear RF surface-electrode traps,
motional ground state cooling was achieved at a height of
the ion over the electrode surface of h = 40 µm and with
a comparatively small motional heating rate of the order of
1 quantum ms−1 [74].

Motional heating rates scale with ∼h−4 [161]. The exact
heating mechanisms are not yet fully understood and the groups
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Figure 14. Schematic to illustrate the projection of the electrodes of
the RF (yellow) and dc (shaded) electrodes on a surface as a way to
scale towards two-dimensional arrays of ions. The black crosses
indicate the positions of the minima of the pseudopotentials.
(a) Cross section of the electrodes of a conventional linear RF trap
with three-dimensional geometry and the electrode structures
projected onto a surface. The dashed arrows point at the new
location of the electrodes, the white areas represent isolating gaps.
(b) Cross section (upper part) and top view (lower part) of the stripe
electrodes. It has been proposed to concatenate several linear RF
surface-electrode traps as depicted in (a) as a basic unit to span a
two-dimensional array of ions [164] (red and blue disks representing
ions in opposite spin states). For sufficiently small mutual ion
distances and decoherence rates of the ions, this is an approach to
scale analogue QS.

at NIST, in Berkeley, at MIT and others are currently putting a
lot of effort into further investigations. However, the groups at
MIT [162], NIST and the University of Maryland demonstrated
a significant reduction of the heating rates in cryogenic (surface
electrode) traps for QC purposes (see also [50]). The inverse
of these heating rates has long been compared with typical
operational durations of a QC of tens of microseconds (see
also section 3.4).

For scaling towards a universal QC it might suffice
to interconnect linear ion traps via junctions on a two-
dimensional surface to a network of one-dimensional traps
[163], realizing the ‘multiplex ion trap architecture’ [75]. That
is, ions are proposed to be shuttled between processor and
memory traps only interacting in the processor traps. This
would allow the subdivision of the large total number of ions
into small groups in many individual traps and to reduce
the local requirements to a technically manageable effort.
One-dimensional RF surface-electrode traps with more than
150 individual dc electrodes and several junctions have been
realized [163], allowing ions at moderate heating rates to be
shuttled.

In addition, the opportunity arose to deliver identical
traps to different groups. One example is the linear RF
surface-electrode trap (denoted by ‘Sandia Linear Trap’ in
the following) [159], which was designed by the groups in
Oxford, Innsbruck and Sandia National Laboratories. The
latter fabricated a small series of identical replicas. The traps
have been tested in several laboratories and the individually
measured trapping parameters are in good agreement with the
design values. Publications are in preparation by the groups at
Oxford and Sandia (see also [159]).

It has to be emphasized that pursuing the multiplex
approach for scaling universal QC is not applicable to the
proposed analogue QS, where the ensemble of spins is
supposed to evolve uniformly as a whole.

Figure 15. Illustration of the optimization results for the electrode
structure for a basic triangular lattice with respect to the height of
the ions above the traps at constant mutual ion distance. The white
gap isolates RF and dc patches. The three red disks symbolize three
ions at a constant distance of d = 40 µm, hovering above the
surface at a height of (a) h = 30 µm, (b) h = 40 µm and (c)
h = 50 µm. (Courtesy of Roman Schmied.)

6.2. Optimized two-dimensional arrays of radio-frequency
surface-electrode traps

Shortly after the invention of RF surface-electrode traps it
was proposed to concatenate linear traps sufficiently close,
such that the ions experience mutual Coulomb interaction in
two dimensions [164] (see figure 14(b)). However, for a real
two-dimensional lattice at sufficiently small and uniform ion
distances of d � 40 µm in two dimensions, this proposal
requires the ions to approach the disturbing surface to h �
d/2 = 20 µm [73].

Schmied et al implemented a method to calculate the
global optimum of the electrode shapes for arbitrary trap
locations and curvatures (originally only for periodic boundary
conditions) [165]. The gaps between neighbouring electrodes
were neglected. The authors exemplarily optimized a trap
array with comparatively stiff horizontal confinement.

The idea of optimizing electrode structures can also be
used for designing traps for analogue QSs with partially
converse requirements. In a collaboration of R. Schmied,
NIST, Sandia National Laboratories, and us, such a surface-
electrode trap has been designed and is currently in fabrication.
The trap will provide three trapping zones arranged in a triangle
(similar to figure 15) and is intended as a first step towards
larger arrays of ions. For this purpose, the optimization method
was extended to finite-sized traps.

It has to be emphasized that there are currently several
proposals and approaches for arrays of surface-electrode traps
mainly for QC. Groups in Berkeley and Innsbruck aim at
trap arrays with individually controlled RF electrodes. They
have the advantage of selectively lowerable trap frequencies
for individual traps and thus increasable interaction strengths
between ions in different traps, while especially the height of
the ions above the surface can be larger and the trap depth of
other traps can be sustained [166] (see also the discussion in
the following subsections). This approach can in principle
be extended to quasi-micromotion-free shuttling of ions in
arrays of RF traps [167] at the expense of precise control
of the RF voltage for each RF electrode. Another proposal
suggests individual coils to be included for each trap to allow
for laser-less interactions mainly for QS [168]. Different
trap geometries specifically for QSs have been designed by
a group in Sussex [169]. Arrays of Penning traps with surface
electrodes are advanced by the groups at Imperial College
[170] and the University of Mainz [171].
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In the following subsections we discuss the optimization
goals for a surface-electrode trap for an analogue QS, their
implications and the perspectives for scalability of this
approach.

6.2.1. Maximization of interaction strengths. The crucial
prerequisite for QSs is to maximize the interaction strength
(see section 3). As opposed to the QC case with multiple
ions in a common potential, this has to be achieved in QS
for ions in individual potentials. The increased mutual ion
distances in arrays of individual traps substantially reduces
the strength of the effective spin–spin interaction. It has be
taken into account that the conditional forces have a limited
strength, for example, because the laser power is limited or the
assumptions in the theoretical model impose constraints as for
the quantum Ising Hamiltonian (see section 3.5). However, a
reduced stiffness of the individual potentials compared with the
example [165] (trap frequencies on the order of 2π ×20 MHz)
results in larger displacements of the ions by the same forces.
This is related to an increased mutual Coulomb energy and thus
larger interaction strengths. Still, a lower bound for the trap
frequencies (on the order of 2π × 1 MHz for Mg+) is imposed
by the constraints for efficient ground state cooling.

6.2.2. Minimization of decoherence. The ions will inevitably
approach the disturbing electrode surfaces, if the distance
between the individual traps is reduced. We now reinvest the
reduced requirements on the stiffness of the horizontal confine-
ment to increase the height of the ions above the surface h keep-
ing the mutual ion distances d constant. Some results for the
scenario of a basic triangular lattice are depicted in figure 15,
which demonstrates the adapted shape of the electrodes due to
different optimization goals. Note that the influence from elec-
trodes of neighbouring traps increases for an increased height
h. The optimization allows for an increase in the height by
more then a factor of 2, still maintaining realistic trapping
parameters (see below). Hence, the related motional heating
rates (in units of energy per time) are expected to be reduced
by more than an order of magnitude. In addition, the increased
h should help to protect the electrodes from the high intensity
of the laser beams parallel to the electrode surfaces.

We additionally include required isolating gaps between
electrodes into subsequent simulations to deduce deviations
in the resulting trapping potential [172] (see figure 15). The
influence of the gaps turned out to be negligible for the example
shown in figure 15, however, for further miniaturized traps
these influences will grow in importance due to technically
limited gap sizes.

6.2.3. Maximization of the lifetime of trapped ions. The
reduced frequencies and increased height above the surface
come at the price of a reduced trap depth. First, sufficiently
deep potentials have to be provided to assure adequate loading
rates out of thermal atomic beams, preferably via efficient
photoionization [173, 174]. Second, sufficient lifetimes for
many ions within the potentials of scaled traps have to
be achieved. Currently, the average lifetime in a room

Figure 16. Electrode structures for basic triangular lattices with
different orientation and tilt of the principal axes. Red disks
symbolize ions trapped in the potential minima for parameters
comparable to those in figure 15(b). (a) One principal axis points in
the vertical direction with the X- and Y -axis lying in the horizontal
plane of the electrodes. The X-principal axis of each trap points
towards the centre of the triangle. (b) The respective principal axes
of all traps point in the same direction and additionally the Z-axis is
tilted with respect to the surface by more than 10◦, which results in a
different symmetry of the electrodes. The tilt of the Z-axis is
essential to reach all spatial degrees of freedom with laser beams
restricted to a plane parallel to the electrodes. (Courtesy of Roman
Schmied.)

temperature surface-electrode trap exceeds one hour (for the
Sandia Linear Trap operated in our laboratory).

Deeper trapping potentials for surface traps were already
achieved by a conductive mesh with controlled voltage (85%
light transmittance) a few millimetres above the electrode
surface [175]. It has also been successfully tested for the
Sandia Linear Trap. The mesh shields the ions from charges on
the camera viewport and provides a wavelength-independent
alternative to a conductive coating (see, for example [176]).

6.2.4. Control of the symmetry of interaction. We
additionally gain control over the individual orientations of
trap axes or the relative orientations of axes of different traps,
respectively (see figure 16). This allows the interaction to be
shaped for a given direction of motional excitation between
ions in different traps (see section 3). It also allows cooling
of all spatial degrees of freedom with laser beams, which have
to propagate parallel to the trap surface to minimize scattering
off the surface. We can rotate the individual trap axes from
pointing towards the centre of the structure (see figure 16(a))
into a parallel alignment and additionally include the required
tilt of the vertical (Z) axes, which will result in a different
symmetry of the electrodes (see figure 16(b)).

6.2.5. Control of the potential in individual traps. First,
splitting dc electrodes into several separately controllable
segments allows for the individual compensation of
displacements of the ions from the minima of the
pseudopotential due to stray fields and space charge effects
(compare section 2.1 and see [176, 177] for schemes of
micromotion compensation). Second, for further scaling, these
electrodes can be used to compensate boundary effects. Due
to the larger number of inner ions, outer ones would be shifted
to larger mutual distances. The further increased density
of electrodes on the surface requires their connections in a
multilayer structure with vertical wiring (vias) [159, 160].
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6.2.6. Estimation of parameters. We estimate the strength
of simulated spin–spin interactions for the case of Mg+ ions
in such devices with currently available laser equipment. We
assume a typical laser power of 400 mW (max. 600 mW are
available) at 280 nm from an all solid-state laser source [178].
We further assume the beam to have a cylindrical profile
with waists of 10 µm × 100 µm and an electrode structure
as depicted in figure 16(b) (d = h = 40 µm). For a trap
depth of 100 meV and a minimal oscillation frequency of the
ions of 2π × 2 MHz, the interaction strengths by far exceed
2πh̄ × 1 kHz.

In a different approach, we could think of using the
motional degrees of freedom for QSs. This scheme would
have the advantage that bare motional couplings are already
in the 2π × 5 kHz regime. In that sense, they are stronger
than effective spin–spin interactions, since the latter are slowed
down with respect to the original motional couplings by the
requirement of adiabaticity. A recent theoretical proposal
by some of us has shown that using periodic modulations of
the trapping frequencies, some phenomena from solid-state
physics may be simulated, such as photon assisted tunnelling
[126] (see section 5.2).

6.3. Perspectives of our approach

As depicted in figure 16(b), in a first step three ions will reside
on the vertices of a triangle and the interaction between the
spins can be simulated as in [47, 48] (compare section 3.5)
or [126] (compare section 5.2). The above parameter estimates
should already suffice for proof-of-principle experiments
and mesoscopically scaled QS. Motional modes in two-
dimensional trap arrays will behave similarly to radial modes
in linear RF traps for all three dimensions [21, 124] and the
effective spin–spin interaction will prefer antiferromagnetic
order for far, red detuning from all modes. Thus, the systems
should give us the possibility to study spin frustrations in a
spatial, triangular configuration (see also section 5.1).

Based on the results of these investigations further scaling
of the surface-trap architecture to large-scale (triangular)
lattices of tens or even hundreds of spins might be pursued
(see figure 17). In addition to the optimization of the trapping
parameters, further technical difficulties have to be considered.

Decoherence due to motional heating as a result of the
vicinity to the electrode surfaces could be mitigated within
a cryogenic setup [50, 162]. The reduced vacuum pressure
could additionally help to increase the lifetime of Mg+, which
is currently limited by photochemical reactions with hydrogen
(mostly H2 + Mg+∗ → MgH+ + H∗) and collisions with heavy
components of the rest gas. The reaction can also be inverted
by pulsed laser beams [179]. However, scaling the system to
tens or hundreds of ions will still require frequent and efficient
reloading. Increasing the loading efficiency and preserving the
vacuum conditions could be achieved by photoionizing cold
atoms from a magneto-optical trap (MOT) [180].

Currently, the available laser power should not impose
any restrictions on the realization of systems of few tens of
ions (see [178] currently providing up to 600 mW). Higher
laser powers for magnesium are in reach [181–183] and could

Figure 17. Electrode structures for RF surface-electrode traps
scaled for analogue QSs. Black dots symbolize the RF minima, red
lines serve as a guide to the eye to emphasize the lattice structures
for (a) three, (b) 12 and (c) an infinite number of ions/spins. The
identical orientation of the principal axes of each RF minimum and
non-vanishing components parallel to the trap surfaces (see
figure 16) are considered for the latter two. (Courtesy of Roman
Schmied.)

Figure 18. Illustration of new options for analogue QS based on
ions (red and blue) and atoms (green) in optical potentials (black
lines as a guide to the eye). (a) Ions populate an optical lattice on
well separated sites. The Coulomb force still provides a large
strength of dipolar (long-ranging) interaction allowing for analogue
QS on many-body effects, similar to the proposed approach in
arrays of RF surface-electrode traps (see section 6). (b) An ion and
atoms populate a common optical lattice and, for example, share the
charge via tunnelling electrons. (c) An ion could be cooled
sympathetically by cold atoms (for example, a BEC indicated by the
green ellipse) [192, 199]. Since the micromotion of the ion and the
related differential motion between atoms and ion becomes
negligible in the common optical trap [60], deep equilibrium
temperatures are predicted to be achievable, down to a regime where
ultra-cold chemistry might dominate the collisions.

allow for even larger arrays of simultaneously coupled ions. In
addition to that, efforts in optics, for example arrays of lenses
[184, 185], fibres integrated into the trap [186] or integrated
mirrors [187–189], could provide individual addressing and
high light intensities at the position of the ions. To further
mitigate the problem of scattered light from surfaces, one
could think of realizing surface traps on partially transparent
substrates [74]. Alternatively, laser-less coupling could be
used as mentioned in section 2.3 [88, 89, 91–93, 168].

Last but not least, it still has to be identified how to
measure observables that permit the verification of frustration
effects without the need for full (exponentially complex) state
tomography.

7. Scaling quantum simulations based on ions in
optical lattices

Some groups aim to merge the two fields of QS based on ions in
RF traps and atoms confined in optical lattices. It has already
been proposed to combine Coulomb crystals in a harmonic
confinement of a common RF trap of three-dimensional
geometry with (commensurate) optical lattices to shape
anharmonic trapping potentials providing new possibilities to
simulate interactions [157]. Another proposal deals with the
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simulation of the Frenkel–Kontorova model using a standing
wave aligned with the trap axis [156]. Kollath et al suggested
exploiting a trapped ion to coherently couple (such as a
scanning microscope) to the atoms confined in an optical
lattice [190].

Optical ion trapping was realized with a single Mg+ ion
trapped in a dipole trap [80]. We can now dream of spanning
an array of ions (even simultaneously with neutral atoms)
within an optical lattice. It has to be emphasized that the
smaller trap depth of optical traps (see figure 1) renders it
highly unlikely that optically trapping charged atoms will
allow us to outperform the achievable trapping parameters or
coherence times of both, ions in RF traps and of optically
trapped neutral atoms. However, in our opinion, this is not
required. The advantage of equally and closely spaced traps
might be combined with individual addressability and, most
importantly, the long-range interaction provided by Coulomb
forces between the ions.

In the following, we will first describe how trapping of an
ion in a dipole trap was achieved. Still facing a huge variety of
challenges, the new possibilities will be discussed afterwards.

7.1. Trapping of an ion in a dipole trap

The procedure used in [80] to load a magnesium ion (24Mg+)
into a dipole trap consists of the following steps: an atom is
photoionized out of a thermal beam and trapped and Doppler
cooled in a conventional RF trap. Next, stray electric fields are
minimized at the site of the ion using the ion as a sensor. Then
a Gaussian laser beam providing the dipole trap is focused
onto the ion and the RF drive of the RF trap is switched off.
From that time on, the ion is confined in the dipole trap in the
directions perpendicular to the beam propagation. The depth
of the dipole trap potential amounts to U0 ≈ 2πh̄ × 800 MHz
or U0 ≈ kB × 38 mK, respectively, and the detuning of the
dipole trap beam from the relevant transition (S1/2 ↔ P3/2)
to � ≈ −6600�, where 1/� determines the lifetime of the
|P3/2〉 state. Static electric fields provide the confinement in
the direction of beam propagation. After a few milliseconds
the RF drive is switched on again and the presence of the ion
can be verified via its fluorescence during Doppler cooling.

For the given parameters a half-life of approximately
2.5 ms is achieved. This value is in very good agreement with
the theoretical predictions, assuming exclusively the heating
process related to off-resonant scattering of the trapping
light by the ion, the so-called recoil heating. It can be
concluded that the heating and subsequent loss of ions from
the optical potential is not dominated by heating effects related
to the charge of the ion, for example, due to the vicinity of
electrodes or fluctuating stray electric fields. Thus, state-of-
the-art techniques for neutral atoms should allow effective
enhancement of the lifetime and coherence times [191].

7.2. Lifetime and coherence times of optically trapped ions

We aim to increase the lifetime by cooling the ion in the
dipole trap. Due to the large ac Stark shift and its large
position dependence, simple Doppler cooling within the
existing setup is challenging. Possibilities of cooling the

ions directly towards the ground state of motion within the
dipole potential are currently being investigated theoretically
and experimentally.

An alternative approach suggests to use cold atoms or
even a BEC to sympathetically cool ions [192]. On longer
timescales the approach of cavity assisted cooling of ions in
conventional RF traps reported in [193] might also provide
long lifetimes without affecting the electronic state of the ion.

Currently, the coherence time of the electronic state of
the ion is limited to a few microseconds due to the high
spontaneous emission rate. If longer coherence times are
required (which is not necessarily the case for every scenario),
they can be achieved in two ways. (1) As for two-photon
stimulated-Raman transitions the spontaneous emission rate
can be reduced by increasing the detuning. A larger beam
intensity could sustain the potential depth. (2) Another option
would be to work with blue detuned light, where the potential
depths can remain identical, however, the ions seek low
intensity and exhibit less spontaneous emission.

7.3. Towards ions and atoms in a common optical lattice

It has still to be demonstrated that one or several ions
can be confined within one- or more-dimensional optical
lattices. With currently available laser sources a mutual
ion distance within each dimension of the order of tens of
micrometres could be achieved, which corresponds to one ion
at approximately every 40th to 50th lattice site (see methods
in [80]). Therefore the mutual ion distance could be smaller
than the currently envisioned distances between neighbouring
traps in the RF surface-electrode trap approach (see section 6).

Since the photoionization scheme applied so far ionizes
out of a thermal beam of magnesium atoms, the average kinetic
energy of the atoms is much larger than the depth of the optical
potential and, in addition, the local vacuum is severely affected.
The loading efficiency for RF traps could be largely enhanced
by ionizing Mg atoms from a MOT [194], which would also
allow direct loading of atoms into an optical trap. In addition,
after loading neutral atoms into the lattice, some of them could
be photoionized on site.

Ions and atoms confined in a common optical lattice could
offer an approach to exploit the physics of charge transfer
reactions. This might allow for a complete new class of
QS, for example, of solid-state systems, where atoms in a
completely occupied lattice (at an initially small density of
ions) share electrons by tunnelling causing highly entangled
states of the compound system. The resulting quantum many-
body dynamics should be governed by the interplay of the
quantum state of the trapped neutral atoms and the electron
tunnelling from neutrals to ions.

8. Conclusions

In the last few years the basic building blocks for a scalable
architecture of a quantum information processor (QC) with
trapped ions have been demonstrated for a few qubits.
Additionally, a large variety of new techniques have already
been tested that might considerably extend the available
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toolbox. For example, interactions based on magnetic field
gradients and RF fields, fibre-coupled optical support on
chip or economically and technologically facilitated cryogenic
environments. Despite the fact that it will be a non-trivial
challenge to scale the system to approximately 105 qubits, no
fundamental limitations have been identified so far.

On a shorter timescale, intriguing problems might be
studied by realizing analogue quantum simulators (QS), by far
exceeding the capabilities of classical computers. They can be
based on similar techniques as a potential QC, but with less
severe constraints on the fidelity of operations and the number
of required ions.

Currently available operational fidelities are predicted
to allow for studying many-body physics, for example in
systems described by quantum spin Hamiltonians, the Bose–
Hubbard and the spin–boson models. First proof-of-principle
experiments simulating Ising type interactions with a few ions
have already been successfully demonstrated.

The required increase of the number of ions and the
accessible dimensions is proposed within two-dimensional
arrays of RF surface-electrode traps. However, the approach is
still at the level of proof-of-principle experiments and further
challenges might arise during its development. Alternative
approaches include Penning traps or optical lattices.

Even though the enthusiasm within this quickly growing
field seems to be justified, it has to be emphasized that efficient
analogue QS still require more than simply scaling. Examples
of other important challenges are (1) to investigate carefully the
influence of different sources of decoherence on the fidelity of
the simulation. Thus, it must be distinguished for the dedicated
application, which decoherence the simulation will be robust
against, which decoherence can be considered in the simulation
and which decoherence is even essential to be included. (2) To
identify possibilities to cross-check the validity of the output
or to benchmark it against other QS approaches, as soon as
the achieved output is not accessible with a classical computer
anymore.

In the future it might be beneficial to combine advantages
of several systems for hybrid QS. On longer timescales, the
experiences gained by developing an analogue QS based on
trapped ions might culminate in approaches incorporating
solid-state devices that might allow for ‘easier’ scaling. With
the realization of a universal QC, universal QS will also become
accessible.
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Appendix A. Normal modes and frequencies

This section describes a more general derivation of the normal
modes and frequencies compared with the one-dimensional
treatment for the linear Paul trap as in [195]. The equations
are extended to three dimensions and an arbitrary trap potential,
as long as the potential at the equilibrium position �x(i)

0 of each
ion can be well approximated by a harmonic potential.

The position of the ith ion is expressed in the Cartesian
coordinates of the laboratory frame

�r(i) = ri �eX + ri+N �eY + ri+2N �eZ. (A.1)

The decomposition into the equilibrium position �x(i)
0 and

displacements �x(i) yields

�r(i) = �x(i)
0 + �x(i) (A.2)

= (x0,i + xi)�eX + (x0,i+N + xi+N)�eY + (x0,i+2N + xi+2N)�eZ.

(A.3)

The Lagrangian for N ions takes the form

L = 1

2
M

[
3N∑
k=1

ẋ2
k −

3N∑
k=1

3N∑
l=1

1

M

(
∂2V

∂rk∂rl

)
xk=xl=0︸ ︷︷ ︸

=:akl

xkxl

]
,

(A.4)

where M denotes the mass of an ion, the index of the partial
derivatives signifies its evaluation at the equilibrium positions
and V denotes the potential consisting of the trap potential V0

and the Coulomb potentials of the ions:

V = V0 +
Q2

8πε0

N∑
i=1

N∑
j=1
j �=i

1

|�r(i) − �r(j)| . (A.5)

Here, Q denotes the charge and ε0 the electric constant.
For practical purposes the trap potential can be expressed

by the harmonic terms corresponding to each ion:

V0 = 1

2
M

N∑
i=1

3∑
j=1

ω
(i)2
j

(�r(i) − �p(i)
)T �d(i)

j ⊗ �d(i)
j (�r(i) − �p(i)).

(A.6)
Here, ω

(i)
j denotes the j th frequency of the harmonically

approximated potential of the ith ion, �d(i)
j the unity vector of

the principle axis corresponding to ω
(i)
j and �p(i) the position of
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the local minimum of the potential for the ith ion. Note that the
frequencies, the vectors of the principle axes, and the minima
of the potentials become equal for all ions in the special case
of a linear Paul trap.

The eigenvalues of the Hessian A := (akl) (see
equation (A.4)) yield the squares of the frequencies ωm of
the normal modes and its eigenvectors �bm determine the ions’
motion of the mth mode:

qm = �bm · �x with �x := (x1, . . . , x3N) . (A.7)

With the abbreviations �q := (q1, . . . , q3N) and B :=
(�b1, . . . , �b3N)T, where the �bm shall be understood as rows of
B, we can express the relation in a more compact way:

�q = B �x ⇔ �x = BT �q. (A.8)

Typically, the eigenvalues and eigenvectors of A have to be
determined numerically.

Appendix B. Transformations of Pauli operators

The definitions of the Pauli operators are repeated here to avoid
confusions concerning their normalization:

σ̂x :=
(

0 1
1 0

)
, σ̂y :=

(
0 −i
i 0

)
, σ̂z :=

(
1 0
0 −1

)
.

(B.1)

The Pauli operators obey the relations

[σ̂i , σ̂j ] = 2iεijkσ̂k, (B.2)

{σ̂i , σ̂j } = 2δij , (B.3)

σ̂ 2
i = 1̂1. (B.4)

A more convenient notation in some contexts is

σ̂+ := σ̂x + iσ̂y =
(

0 2
0 0

)
, (B.5)

σ̂− = σ̂x − iσ̂y =
(

0 0
2 0

)
(B.6)

with the normalization as in [50]. They fulfil the following
relations:

[σ̂±, σ̂∓] = ±4σ̂z, (B.7)

[σ̂z, σ̂±] = ±2σ̂±. (B.8)

The transformations of the Pauli operators into the
interaction picture involve terms of the form

σ̂ ′
i := eiκσ̂z σ̂ie

−iκσ̂z . (B.9)

The transformation leaves 1̂1 and σ̂z unchanged. The non-trivial
cases i = x and i = y can be calculated using the Baker–
Campbell–Hausdorff formula

e−B̂ ÂeB̂ =
∑

n

1

n!
[Â, B̂]{n}

= Â + [Â, B̂] +
1

2
[[Â, B̂], B̂] + · · · (B.10)

with B̂ = −iκσ̂z, Â = σ̂x/y = σ̂+±σ̂−
m±

, m+ := 2 and m− := 2i.
The commutators are given by

[σ̂+ ± σ̂−, −iκσ̂z] = i2κ
(
σ̂+ ∓ σ̂−

)
, (B.11)

[σ̂+ ± σ̂−, −iκσ̂z]
{2} = i2κ[

(
σ̂+ ∓ σ̂−

)
, −iκσ̂z]

= (i2κ)2 (σ̂+ ± σ̂−
)
, (B.12)

[σ̂+ ± σ̂−, −iκσ̂z]
{2n−1} = (i2κ)2n−1 (σ̂+ ∓ σ̂−

)
, (B.13)

[σ̂+ ± σ̂−, −iκσ̂z]
{2n} = (i2κ)2n

(
σ̂+ ± σ̂−

)
. (B.14)

Hence, the Pauli operators in the interaction picture read

eiκσ̂z σ̂x/ye−iκσ̂z = eiκσ̂z
σ̂+ ± σ̂−

m±
e−iκσ̂z

= 1

m±

∑
n

(i2κ)2n+1

(2n + 1)!

(
σ̂+ ∓ σ̂−

)

+
1

m±

∑
n

(i2κ)2n

(2n)!

(
σ̂+ ± σ̂−

)
(B.15)

= 1

m±

∑
n

(i2κ)n

n!
σ̂+

± 1

m±

∑
n

(−i2κ)n

n!
σ̂−

= 1

m±

(
ei2κ σ̂+ ± e−i2κ σ̂−

)
.

The operators σ̂+ and σ̂− transform:

eiκσ̂z σ̂+e−iκσ̂z = ei2κ σ̂+, (B.16)

eiκσ̂z σ̂−e−iκσ̂z = e−i2κ σ̂−. (B.17)

Appendix C. Transformations of motional operators

The creation operator â and the annihilation operator â† fulfil
the relations

â|n〉 = √
n|n − 1〉, (C.1)

â†|n〉 =
√

n + 1|n + 1〉, (C.2)

[â, â†] = 1̂1. (C.3)

The transformation of the Hamiltonians into the interac-
tion picture requires the knowledge of the transformation of
eiξ(â+â†).

It can be performed using the special case of the Baker–
Campbell–Hausdorff formula from appendix B again. The
commutators appearing in the formula are

[â + â†, −iλâ†â] = −iλ
(
â − â†

)
, (C.4)

[â + â†, −iλâ†â]{2} = −iλ[â − â†, −iλâ†â]

= (−iλ)2
(
â + â†

)
, (C.5)

[â + â†, −iλâ†â]{n} = (−iλ)n
(
â + (−1)nâ†

)
. (C.6)

(C.7)

Hence, the full transformation reads

eiλâ†â
(
â + â†

)
e−iλâ†â =

∑
n

(−iλ)n

n!

(
â + (−1)nâ†

)
= âe−iλ + â†eiλ.

(C.8)
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From this relation we can immediately derive

eiλâ†â
(
â + â†

)n
e−iλâ†â =

[
eiλâ†â

(
â + â†

)
e−iλâ†â

]n
= [âe−iλ + â†eiλ

]n (C.9)

by making use of the unitarity of eiλâ†â . We obtain for the
transformation

eiλâ†âeiξ(â+â†)e−iλâ†â = eiλâ†â
∑

n

(iξ)n

n!

(
â + â†

)n
e−iλâ†â

=
∑

n

(iξ)n

n!

[
âe−iλ + â†eiλ

]n
(C.10)

= exp
(
iξ
[
âe−iλ + â†eiλ

])
.

Appendix D. Matrix elements of displacement
operator

The following derivation is based on [95]. A difference is that
we do not restrict the displacement to purely imaginary λ in
the following. A similar derivation can be found in appendix B
of [111].

The simple Baker–Campbell–Hausdorff formula

eA+B = eAeBe−[A,B]/2 (D.1)

holds for [A, [A, B]] = [B, [B, A]] = 0.
We obtain for the annihilation operator

âm|n〉 =
{√

n!
(n−m)! |n − m〉 for m � n,

0 else.
. (D.2)

Using the above form of the Baker–Campbell–Hausdorff
formula, we can rewrite the displacement operator as

D̂(λ) = eλâ†−λ∗â = e−|λ|2/2eλâ†
e−λ∗â . (D.3)

With

e−λ∗â|n〉 =
∑
m

(−λ∗)m

m!
âm|n〉

=
∑
m

(−λ∗)m

m!

√
n!

(n − m)!
|n − m〉,

(D.4)

this yields for n′ � n

〈n′|D̂(λ)|n〉 = e−|λ|2/2〈n′|eλâ†
e−λ∗â|n〉

= e−|λ|2/2
∑
m′

∑
m

〈n′ − m′|n − m〉λ
m′

m′!

× (−λ∗)m

m!

√
n′!

(n′ − m′)!

√
n!

(n − m)!

= e−|λ|2/2λn′−n

n∑
m=0

(−1)m|λ|2m

m!(n′ − n + m)!

×
√

n′!n!

(n − m)!

= e−|λ|2/2λn′−n

√
n!

n′!
L(n′−n)

n

(|λ|2) ,

(D.5)

where L(α)
n (x) denotes the generalized Laguerre polynomials

[196]. Analogously, we obtain for n′ � n

〈n′|D̂(λ)|n〉 = e−|λ|2/2
(−λ∗)n−n′

√
n′!
n!

L
(n−n′)
n′

(|λ|2) . (D.6)

For values λ = iηeiωt with η ∈ R, we can write
equations (D.5) and (D.6) as

〈n′|D̂ (iηeiωt
) |n〉 = e−η2/2 (iη)|n

′−n| eiω(n′−n)t

×
√

n<!

n>!
L|n′−n|

n<

(
η2
)
,

(D.7)

where n< := min(n′, n) and n> := max(n′, n).

Appendix E. System of differential equations of the
Rabi problem

The Rabi problem consists of the following system of
differential equations:∣∣∣∣ ċ2 = λe−iωtc1

ċ1 = −λ∗eiωtc2

∣∣∣∣ . (E.1)

It can be solved by differentiating with respect to t∣∣∣∣ c̈2 = λe−iωt ċ1 − iωλe−iωtc1

c̈1 = −λ∗eiωt ċ2 − iωλ∗eiωtc2

∣∣∣∣ (E.2)

and inserting equation (E.1):

c̈2 = −iωċ2 − |λ|2c2, (E.3)

c̈1 = iωċ1 − |λ|2c1. (E.4)

Using the ansatz ci = aieiκi t we obtain the characteristic
equations

− κ2
2 = ωκ2 − |λ|2, (E.5)

− κ2
1 = −ωκ1 − |λ|2, (E.6)

which have the solutions

κ2,± = −ω

2
±
√

ω2

4
+ |λ|2 := −ω

2
± κ ′, (E.7)

κ1,± = ω

2
±
√

ω2

4
+ |λ|2 := ω

2
± κ ′ = −κ2,∓. (E.8)

Here, we introduced the abbreviation κ ′ :=
√

(ω2/4) + |λ|2.
The solutions of equations (E.3) and (E.4) read

c2 = a2,+eiκ2,+t + a2,−eiκ2,−t

=
(
a2,+eiκ ′t + a2,−e−iκ ′t

)
e−iωt/2, (E.9)

c1 = a1,+eiκ1,+t + a1,−eiκ1,−t

=
(
a1,+eiκ ′t + a1,−e−iκ ′t

)
eiωt/2. (E.10)

Inserting them into the original system of differential
equations equation (E.1), we obtain the following relations
for the constants ai,±:

iκ2,±a2,± = λa1,±, (E.11)

iκ1,±a1,± = −λ∗a2,±. (E.12)
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We replace a1,± by a2,± using equation (E.11) and obtain

c2 =
(
a2,+eiκ ′t + a2,−e−iκ ′t

)
e−iωt/2, (E.13)

c1 =
(
µ+a2,+eiκ ′t + µ−a2,−e−iκ ′t

)
eiωt/2, (E.14)

where we introduced the (temporary) abbreviation µ± :=
iκ2,±/λ.

The constants a2,± can now be expressed in terms of the
initial values c20 := c2(t = 0) and c10 := c1(t = 0). Setting
t = 0 in equations (E.13) and (E.14), we obtain a system of
linear equations with the solutions

a2,+ = µ−c20 − c10

µ− − µ+
, (E.15)

a2,− = −µ+c20 − c10

µ− − µ+
. (E.16)

Hence,

c2 = (µ−c20 − c10)eiκ ′t − (µ+c20 − c10)e−iκ ′t

µ− − µ+
e−iωt/2, (E.17)

c1 = µ+(µ−c20 − c10)eiκ ′t − µ−(µ+c20 − c10)e−iκ ′t

µ− − µ+
eiωt/2,

(E.18)

and by expressing µ± in terms of ω, κ ′, and λ we obtain

c2(t) =
(

cos(κ ′t) +
ω

2

i

κ ′ sin(κ ′t)
)

e−iωt/2c2(0)

+
λ

κ ′ sin(κ ′t)e−iωt/2c1(0), (E.19)

c1(t) = −λ∗

κ ′ sin(κ ′t)eiωt/2c2(0)

+

(
cos(κ ′t) − ω

2

i

κ ′ sin(κ ′t)
)

eiωt/2c1(0). (E.20)

Appendix F. Time evolution operator

The calculation of the time evolution operator involves terms
of the form

Ĥ(i)
m (t) = iξ (i)

m ei(−δmt+ϕ(i))â†
m + h.c., (F.1)

where ξ (i)
m ∈ R and the total Hamiltonian reads Ĥ(t) =:∑N

i=1

∑3N
m=1 Ĥ(i)

m (t). (More generally, the constants ξ (i)
m

represent Hermitian operators ξ̂ (i)
m with [ξ̂ (i)

m , ξ̂
(j)
n ] =

0∀i, j, m, n.)
The commutator of two of these terms will trivially vanish

for all i, j and all times t ′, t ′′, if both terms belong to different
modes m �= n:

[Ĥ(i)
m (t ′), Ĥ(j)

n (t ′′)] = 0 for m �= n. (F.2)

However, for m = n, the commutators do not vanish. Using
the relation

[eiλâ† − e−iλâ, eiλ′
â† − e−iλ′

â]

= ei(λ−λ′)(ââ† − â†â) − e−i(λ−λ′)(ââ† − â†â)

= 2i sin(λ − λ′)1̂1 (F.3)

yields

[Ĥ(i)
m (t ′), Ĥ(j)

m (t ′′)]
= 2iξ (i)

m ξ (j)
m sin(δm(t ′ − t ′′) − (ϕ(i) − ϕ(j))). (F.4)

The time evolution operator can be calculated using a
Magnus expansion [197, 198]. As commutators with higher
‘nesting level’ trivially vanish, the expansion simplifies to

Û (t, t0) = exp

(
− i

h̄

∫ t

t0

dt ′Ĥ(t ′)

− 1

2h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[Ĥ(t ′), Ĥ(t ′′)]

)
.

(F.5)

The single integrals yield∫ t

t0

dt ′Ĥ(i)
m (t ′) = −ξ (i)

m

δm

(
e−iδm(t−t0) − 1

)
e−iδmt0 eiϕ(i)

â†
m + h.c.

(F.6)

and the double integrals of the commutators yield∫ t

t0

dt ′
∫ t ′

t0

dt ′′[Ĥ(i)
m (t ′), Ĥ(j)

m (t ′′)] = 2iξ (i)
m ξ (j)

m

×
∫ t

t0

dt ′
∫ t ′

t0

dt ′′ sin
(
δm(t ′ − t ′′) − (ϕ(i) − ϕ(j)

))
= 2iξ (i)

m ξ
(j)
m

δm

∫ t

t0

dt ′
[
cos
(
ϕ(i) − ϕ(j)

)
(F.7)

− cos
(
δm(t ′ − t0) − (ϕ(i) − ϕ(j)

))]
= 2iξ (i)

m ξ
(j)
m

δ2
m

[
δm(t − t0) cos

(
ϕ(i) − ϕ(j)

)
− sin

(
δm(t − t0) − (ϕ(i) − ϕ(j))

)− sin(ϕ(i) − ϕ(j))
]
.

Note that in the time evolution operator corresponding to Ĥ(t)

the terms sin(ϕ(i) − ϕ(j)) = − sin(ϕ(j) − ϕ(i)) cancel each
other.

Appendix G. Canonical transformation

The unitary operator of the canonical transformation has the
form

Ûc := e−(λâ†−λ∗â) with λ := ξ

κ
(G.1)

and is applied to

Ĥ := (ξ â† + ξ ∗â
)︸ ︷︷ ︸

:=Ĥ1

+
(−κâ†â

)︸ ︷︷ ︸
:=Ĥ2

→ Ĥ′ := ÛcĤÛ †
c .

(G.2)
Here, the constants ξ ∈ C and κ ∈ R.

We use the Baker–Campbell–Hausdorff formula from
appendix B to do the transformation. The commutators for
Ĥ1 yield

[ξ â† + ξ ∗â, λâ† − λ∗â] = ξλ∗ (−â†â + ââ†
)

− ξ ∗λ
(
â†â − ââ†

)
= (ξλ∗ + ξ ∗λ

)
1̂1

= 2ξξ ∗

κ
1̂1.

(G.3)
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Commutators with higher ‘nesting levels’ trivially vanish.
Hence, the complete transformation of Ĥ1 reads

Ĥ′
1 := ÛcĤ1Û

†
c = (ξ â† + ξ ∗â

)
+

2ξξ ∗

κ
1̂1. (G.4)

The commutators for Ĥ2 read

[−κâ†â, λâ† − λ∗â] = −κ
(
â†[â, λâ† − λ∗â]

+ [â†, λâ† − λ∗â]â
)

= −κ
(
λâ† + λ∗â

)
= − (ξ â† + ξ ∗â

)
(G.5)

and

[−κâ†â, λâ† − λ∗â]{2} = [− (ξ â† + ξ ∗â
)
, λâ† − λ∗â]

= −2ξξ ∗

κ
1̂1,

(G.6)

where we used equation (G.3). Higher order terms in the
expansion trivially vanish again. The complete transformation
of Ĥ2 reads

Ĥ′
2 := ÛcĤ2Û

†
c = −κâ†â − (ξ â† + ξ ∗â

)− ξξ ∗

κ
1̂1. (G.7)

Hence, the transformation of the full Hamiltonian reads

Ĥ′ = Ĥ′
1 + Ĥ′

2 = ξξ ∗

κ
1̂1 − κâ†â. (G.8)

We want to stress that the canonical transformation is exact in
this case.
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